Answer:
Acceleration due to gravity will be 
Explanation:
We have given length of pendulum l = 55 cm = 0.55 m
It is given that pendulum completed 100 swings in 145 sec
So time taken by pendulum for 1 swing 
We have to find the acceleration due to gravity at that point
We know that time period of pendulum;um is given by

So 

Squaring both side


So acceleration due to gravity will be 
Distance = (1/2) (acceleration) (time)²
1.4m = (0.835 m/s²) (time)²
(time)² = (1.4/0.835) s²
<em>time = 1.295 s</em>
Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
This effect is explained by increased chain entanglements at higher molecular weights. Increasing the degree of crystallinity of a semicrystalline polymer leads to an enhancement of the tensile strength. Deformation by drawing increases the tensile strength of a semicrystalline polymer.