Answer:
1.35208 m/s
Explanation:
Speed of the boat = 0.75 m/s
Distance between the shores = 100 m
Time = Distance / Speed

Time taken by the boat to get across is 133.33 seconds
Point C is 150 m from B
Speed = Distance / Time

Velocity of the water is 1.125 m/s
From Pythagoras theorem

So, the man's velocity relative to the shore is 1.35208 m/s
Answer:
<em> The elastic potential energy stored in the bungee cord = 20 J</em>
Explanation:
potential energy: This is the energy possessed by a body due to its position. The S.I unit of energy is Joules. The mathematical expression for elastic potential energy is given below
E = 1/2ke²................ Equation 1
Where E = elastic potential energy of the spring, k = force constant of the spring, e = extension
<em>Given: K = 10 N/m, e = 2.00 m</em>
<em>Substituting these values into Equation 1</em>
<em>E = 1/2(10)(2)²</em>
<em>E = 5×4</em>
<em>E = 20 Joules.</em>
<em>Therefore the elastic potential energy stored in the bungee cord = 20 J</em>
<em></em>
Answer:
Directly proportional: as one amount increases another amount increases at the ... The "constant of proportionality" is the value that relates the two amounts ... Example: y is directly proportional to x, and when x=3 then y=15. ... Speed and travel time are Inversely Proportional because the faster we go the shorter the time.
There's no way to tell. Without seeing a diagram of the circuit,
I'll need to know much more about it than you've told me.
I don't know anything about the components or power supply
that are in the circuit, and I don't know where point ' f ' is in it.
Right now, even with the copious volume of all the available
information, no answer to your question is possible.