-- In order to achieve constant verlocity, the net force on the mass must be zero. So if there ARE any forces acting on it, they must be balanced.
-- There is already a force on the mass that can't be eliminated . . . the force of gravity.
-- That force due to gravity is (mass x gravity) = (25 kg)(9.8 m/s²) = <em><u>245N</u></em> in the <u><em>downward</em></u> direction.
-- In order to 'balance' the forces and make them add up to zero, we have to provide another force of <em>245N</em>, all in the <em>upward</em> direction.
-- Then the forces on the object will be balanced, the NET force on it will be zero, and whichever way you start it moving, it will continue to move at a cornstant verlocity.
A star with large luminosity would have a relatively low absolute magnitude. Absolute magnitude is a number that tells how bright a star is from the Earth. However, this scale is backwards and logarithmic, so having a large absolute magnitude value means that the star is faint.
1,000 grams = 1 kilogram
so 55 megagrams = 55,000 kilograms
100 cm = 1 meter
so 500 cm = 5 meters
Acceleration of gravity on Earth = 9.8 m/s²
Weight = (mass) x (gravity)
========================================
Work = increase in potential energy =
(weight) x (height) =
(mass) x (gravity) x (height) =
(55,000 kg) x (9.8 m/s²) x (5 m) =
2,695,000 joules .