The magnitude of the electric field at the third vertex of the triangle is determined as zero.
<h3>Electric field at the third vertex of the triangle </h3>
The electric field at the third vertex of the equilateral triangle due to the other charges placed on the first and second vertices is calculated as follows;
E = E(13) + E(23)
E = (kq₁)/r² + (kq₂)/r²
where;
- q1 is positive charge
- q2 is negative charge
E = (kq₁)/r² - (kq₂)/r²
E = 0
Thus, the magnitude of the electric field at the third vertex of the triangle is determined as zero.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
Answer:
b. It is dropped
Explanation:
If the initial velocity is zero, the object move from rest. That happens if the object is dropped
Answer:
Explanation:
Speed of skier without parachute
= √ 2gh
= √ 2 x 9.8 x 35
= 26.2 m / s
Speed of skier with parachute
net force downwards
mg - 200
= 60 x 9.8 -200
= 388 N
acceleration = 388 / 60
a = 6.47 m / s
v = √ 2ah
= √ 2 x 6.47 x 35
= 21.28 m / s
Heat your answer is Heat.
Hoped I helped.