The work is path independent since we have a conservative force.
Thus
Answer (1)
Answer:
0.23 J
Explanation:
k*(36 - 28) = 23
so k = 23/8 N/cm
W = k(32 - 28)²/2 = 23/8 * 4²/2 = 23 N-cm = 0.23 J
Answer: Two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg. If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN
Explanation: To find the answer we need to know more about the Newton's law of gravitation.
<h3>What is Newton's law of gravitation?</h3>
- Gravitation is the force of attraction between any two bodies.
- Every body in the universe attracts every other body with a force.
- This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between these two masses.
- Mathematically we can expressed it as,

<h3>How to solve the problem?</h3>
- Here, we have given with the data's,

- Thus, the force of attraction between these two bodies will be,

Thus, if two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg and, If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN.
Learn more about the Newton's law of gravitation here:
brainly.com/question/28045318
#SPJ4
The number of kilowatts used by an individual to operate his appliances is determined as 12.1 kWh.
<h3>
Average daily power consumption</h3>
The average daily power consumption is the amount of electric energy consumed by an individual on a daily rate.
The average daily power consumption of individuals in USA is 12,100 W-hr.
<h3>Converting watts to kilowatts</h3>
E = 12,100 Whr/1000
E = 12.1 kWh
Thus, the number of kilowatts used by an individual to operate his appliances is determined as 12.1 kWh.
Learn more about power here: brainly.com/question/13881533
#SPJ1
Answer:
False
Explanation:
A wave is a disturbance that transfers energy from one place to another without transferring matter.