<span>Maritime tropical air masses develop over warm waters present in the tropics and Gulf of Mexico, where heat and moisture are carried to to the overlying air from the water below.
</span><span>
</span><span> Tropical air masses having northward movement carry warm moist air into the United States, thus increasing the potential for condensation. Generally the southern states experience tropical air masses. But, in winter season, southerly winds ahead of migrating cyclones <span>sometimes transport tropical air mass towards north.
</span></span><span><span>
</span></span><span><span>The counterclockwise winds related to northern hemisphere mid latitude cyclones play an important role in the movement air masses, carrying warm moist air towards north ahead of a low while dragging colder and drier air towards south.</span></span>
Answer:
The duration of the impact is 0.005384 seconds
Explanation:
Given
m = 0.43 kg
v = 5.2 m/s
x = 0.014 m
Knowing the formulas

Answer:
I would say that I agree with the one that said that each hill must be lower than the previous one and use the principle of conservation of energy to explain.
Explanation:
Roller coaster are usually designed such that its total energy remains conserved at any point on the track. Now, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. At certain height on the track, the total energy of the roller coaster is in form of potential energy, which gets converted to kinetic energy as soon as it starts sliding down the hill till get to the hill's endpoint where it has maximum kinetic energy. The cycle of sliding from a high point on the track to a low point on the track means there is potential energy is converted to kinetic energy and kinetic energy then converts back to potential energy and the cycle continues.
However, due to the effect of gravity and frictional force between the track and the coaster, the energy of the coaster is gradually reduces, so it becomes a bit difficult for the coaster to move to the next hill of the same height. It is for this reason that each hill must be lower than the previous one, so that the coaster can overcome the next hill's height with its reduced energy until it loses all its energy and comes to a stop.