Answer:
Explanation:
magnetic filed, B = 0.65 T
initial diameter, d = 17.5 cm
final diameter, d' = 6.6 cm
time, t = 0.48 s
(a) According to Lenz's law, the direction of induced current is clockwise.
(b) Let e is the induced emf.
initial area, A = π r² = 3.14 x 0.0875 x 0.0875 = 0.024 m²
final area, A' = π r'² = 3.14 x 0.033 x 0.033 = 0.00342 m²
change in area, ΔA = A - A' = 0.024 - 0.00342 = 0.02058 m²
The magnitude of induced emf is given by


e = 0.65 x 0.02058 / 0.48
e = 0.028 V
(c) R = 2.5 ohm
i = e / R
i = 0.028 / 2.5
i = 0.011 A
Answer:
Explanation:
When two objects are in thermal equilibrium they are said to have the same temperature. During the process of reaching thermal equilibrium, heat, which is a form of energy, is transferred between the object
which means that it refers to transfer through a selectively permeable partition, the contact path.[1] For the relation of thermal equilibrium, the contact path is permeable only to heat; it does not permit the passage of matter or work; it is called a diathermal connection. According to Lieb and Yngvason, the essential meaning of the relation of thermal equilibrium includes that it is reflexive and symmetric. It is not included in the essential meaning whether it is or is not transitive. After discussing the semantics of the definition, they postulate a substantial physical axiom, that they call the "zeroth law of thermodynamics", that thermal equilibrium is a transitive relation. They comment that the equivalence classes of systems so established are called isotherms
plz dont be mad that i coppied it sounded so good so i wanted veryone to see it when they look bc i am dumb
The equation for kinetic energy is,
Ke = (1/2)mv^2.
You're given a kinetic energy of 790 joules, and a speed of 1.6 m/s. Plugging these values into the equation, we get,
790 = (1/2)(1.6)^2(m).
Solving for m, we get,
m = (790)/(0.5(1.6)^2).
I'll let you crunch out those numbers for yourself :D
If you have any questions, feel free to ask. Hope this helps!
Answer:
Ratio table of ordered pairs represent proportional relationship .
<em>Hope </em><em>it</em><em> is</em><em> helpful</em><em> to</em><em> you</em>
A star is located 5.9 light years from Earth.
We know that : 1 light year = 9.46 trillion kilometers.
We will calculate the distance in trillion kilometers multiplying the number of light years by 9.46:
5.9 * 9.46 = 55.814
Answer: The distance is 55.814 trillion km.