Velocity is the answer..
hope that helps
Answer:
Final volumen first process 
Final Pressure second process 
Explanation:
Using the Ideal Gases Law yoy have for pressure:

where:
P is the pressure, in Pa
n is the nuber of moles of gas
R is the universal gas constant: 8,314 J/mol K
T is the temperature in Kelvin
V is the volumen in cubic meters
Given that the amount of material is constant in the process:

In an isobaric process the pressure is constant so:



Replacing : 

Replacing on the ideal gases formula the pressure at this piont is:

For Temperature the ideal gases formula is:

For the second process you have that
So:




Answer:
Explanation:
Initial momentum is 1.5e6(3) = 4.5e6 kg•m/s
An impulse results in a change of momentum
The tug applied impulse is 12000(10) = 120000 N•s or 0.12e6 kg•m/s
The remaining momentum is 4.5e6 - 0.12e6 = 4.38e6 kg•m/s
The barge velocity is now 4.38e6 / 1.5e6 = 2.92 m/s
The tug applies 0.012e6 N•s of impulse each second.
The initial barge momentum will be zero in
t = 4.5e6 / 0.012e6 = 375 s or 6 minutes and 15 seconds
To stop the barge in one minute(60 s), the tug would have to apply
4.5e6 / 60 = 75000 N•s /s or 75 000 N
Answer:
mountains are limited in their theoretical height by several processes. First is isostasy: the bigger a mountain gets, the more it weighs down its tectonic plate, so it sinks lower. ... Bottom line: mountains can get taller than Mount Everest in earth gravity, like the Appalachians probably did—but not much taller.
Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN