Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Answer:
Explanation:
The climate of any particular place is influenced by a host of interacting factors.
The factor that influence climate are
1. latitude
2. elevation,
3. nearby water
4. ocean currents
5. topography
6. vegetation
7. prevailing winds.
The primary cause of climate change is the burning of fossil fuels, such as oil and coal, which emits greenhouse gases into the atmosphere—primarily carbon dioxide. Other human activities, such as agriculture and deforestation, also contribute to the proliferation of greenhouse gases that cause climate change.
Answer:
The vector form is as shown in the attachment
Explanation:
The figure as shown in the diagram, indicates that the car is moving along the road at a constant speed. Centripetal acceleration comes into play for an object moving in a circular motion at uniform speed. The centripetal acceleration is the acceleration experienced by an object while in uniform circular motion.
Mathematically from centripetal acceleration; a = v2/r
The equation shows that there is an inverse relationship between the acceleration and the radius of curvature as such the radius of curvature at the point A will be more than the radius of curvature at the point C, this shows that the centripetal acceleration at point C will be more than the centripetal acceleration at point A.
The attachment shows the figure and the representation in vectorial form.
Answer:
2587.2 J.
Explanation:
From potential energy,
The work done to lift the chain = potential energy of the chain.
W = mgh............... Equation 1
Where W = work done to lift the chain, m = mass of the chain, g = acceleration due to gravity of the chain, h = height of the chain.
But,
m = m'd............... Equation 2
Where m' = density of the chain, d = length of the chain.
Substitute equation 2 into equation 1
W = m'dgh................ Equation 3
Given: m' = 2 kg/m, d = 12 m, h = 11 m, g = 9.8 m/s²
Substitute into equation 3
W = 2(12)(11)(9.8)
W = 2587.2 J.