I think it most likely burn since th metal tube is going to transfer so much heat
1) A negatively charged ion is chloride
2) Moving from left to right, valence electrons increase by one.
3) The period number gives information about how many energy levels it has
4) Fluorine has a charge of 1–
5) Potassium and iodine form an ionic bond
The periodic table is an arrangement of elements into groups and periods based on their periodic properties.
In the periodic table, elements are arranged in groups and periods. There are 18 groups and 8 periods.
Chlorine is in group 17, there have seven outermost electrons hence the chlorine atom needs only one more electron in order to attain a stable octet. This is done by accepting one electron to form the negatively charged chloride ion.
As we move from one period to another, one extra electron is added to the outermost shell of elements. Hence, the valence electrons increases by one.
The period to which an element belongs shows you the number of shells or energy levels in the atom of that element.
Fluorine is in group 17. One electron is needed to achieve a stable octet. When an atom accepts one electron, its charge is 1–.
Bonding based on ionic charges occurs between metals and nonmetals. Potassium is a metal of group 1 and iodine is a non metal of group 17 hence they can bond together based on their ionic charges.
Learn more:brainly.com/question/23277186
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that there is no external torque on the system of two twins
so here we will use



Part b)
Since angular momentum is conserved here as there is no external torque
so we will have



Part c)
Work done by both of them = change in kinetic energy
so we have




That would be answer B
hope this helped you
Answer:
b. AG, work function=4.74eV
Explanation:
Ultraviolet light starts at the end of the visible light spectrum, where violet light ends:
(wavelength of lowest-energy ultraviolet light)
So, the lowest energy of ultraviolet light can be found by using the formula

where
h is the Planck constant
c is the speed of light
Substituting,

And keeping in mind that

This energy converted into electronvolts is

The work function of a metal is the minimum energy needed to extract a photoelectron from the surface of the metal. Therefore, the metals that exhibit photoelectric effect are the ones whose work function is larger than the energy we found previously, so:
b. AG, work function=4.74eV
Because for all the other metals, visible light will be enough to extract photoelectrons.