Answer:
The new frequency (F₂ ) will be related to the old frequency by a factor of one (1)
Explanation:
Fundamental frequency = wave velocity/2L
where;
L is the length of the stretched rubber
Wave velocity = 
Frequency (F₁) = 
To obtain the new frequency with respect to the old frequency, we consider the conditions stated in the question.
Given:
L₂ =2L₁ = 2L
T₂ = 2T₁ = 2T
(M/L)₂ = 0.5(M/L)₁ = 0.5(M/L)
F₂ = ![\frac{\sqrt{\frac{2T}{0.5(\frac{M}{L})}}}{4*L} = \frac{\sqrt{4(\frac{T}{\frac{M}{L}}})}{4*L} = \frac{2}{2} [\frac{\sqrt{\frac{T}{\frac{M}{L}}}}{2*L}] = F_1](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B%5Cfrac%7B2T%7D%7B0.5%28%5Cfrac%7BM%7D%7BL%7D%29%7D%7D%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B4%28%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%29%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B2%7D%7B2%7D%20%5B%5Cfrac%7B%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%7D%7B2%2AL%7D%5D%20%3D%20F_1)
Therefore, the new frequency (F₂ ) will be related to the old frequency by a factor of one (1).
Rt= ΣR = 40Ω
Vt= 80V
It= 80V/40Ω= 2A
V1= 15Ω*2A= 30V
V2= 20Ω*2A= 40V
V3= 5Ω*2A= 10V
when object goes under acceleration
c).its velocity always increases
<h3><u>Additional</u><u> </u><u>information</u><u>:</u><u>-</u></h3>
★ Acceleration: Rate of increase in velocity.
★ Velocity: Distance travelled by a body per unit time in given direction is called velocity .
Gravity<span> is measured by the acceleration that it gives to freely falling objects. At Earth's surface the acceleration of </span>gravity<span> is about 9.8 metres (32 feet) per second per second.</span>