Answer:
__________________________________________________
No; the sample could not be aluminum;
since the density of aluminum, " 2.7 g/cm³ " , is NOT close enough to the density of the sample, " 3.04 g/cm³ " .
________________________________________________
Explanation:
________________________________________________
Density is expressed as "mass per unit volume" ;
in which:
"mass, "m", is expressed in units of "g" (grams); and:
"Volume, "V", is expressed in units of "cm³ " (such as in this problem); or in units of "mL" ;
__________________________________________________
{Note the exact conversion: " 1 cm³ = 1 mL " .}.
__________________________________________________
The formula for density: D = m/V ;
Given: The density of aluminum is: 2.7 g/cm³.
Given: A sample has a mass of 52.0 g ; and Volume of 17.1 cm³ ; could it be aluminum?
_________________________________________________________
Let us divide the mass of the sample by the volume of the sample;
by using the formula:
___________________________________________
D = m / V ;
and see if the value is at, or very close to "2.7 g/cm³ ".
If it is, then it could be aluminum.
____________________________________________________
The density for the sample:
D = (52.0 / 17.1) g/cm³ = 3.0409356725146199 g/cm³ ;
→round to "3 significant figures" ;
= 3.04 g/cm³ .
_______________________________________________
No; the sample could not be aluminum; since the density of aluminum,
"2.7 g/cm³ " is NOT close enough to the density of the sample,
"3.04 g/cm³ " .
____________________________________________________
Answer:
They're going to come home as soon as the movie is over.
Number 19 is frequency and not sure which question you asked!!!??
Answer: 2.67 m/s
Explanation:
Given
Mass of block A is 
mass of block B is 
The initial velocity of block A 
the initial velocity of block B is 
After collision velocity of block A is 
Conserving momentum

The momentum of block A after the collision is 
Therefore, there is no change in sign.
Answer:
(a) 2.34 s
(b) 6.71 m
(c) 38.35 m
(d) 20 m/s
Explanation:
u = 20 m/s, theta = 35 degree
(a) The formula for the time of flight is given by


T = 2.34 second
(b) The formula for the maximum height is given by


H = 6.71 m
(c) The formula for the range is given by


R = 38.35 m
(d) It hits with the same speed at the initial speed.