<span>In my opinion, I myself believe that there are only two supernovae. The first is the white dwarf. It makes sense because if something is too big for its size, it will "explode". Just like a basketball with too much air. Massive star supernovae is like something has reached it's full potential and cannot get any bigger or better.</span>
Answer:
If an object moves twice as fast its kinetic energy quadruples.
Explanation:
The kinetic energy (K₁) of a body of mass (m) that moves with speed (v) is:
K₁= 1/2 * m* v²
If we double the speed of the body, its kinetic energy (K₂) will be:
K₂= 1/2 * m*( 2v)²
K₂= 1/2 * m* 4 *v²
K₂= 4(1/2 * m *v²)
K₂= 4*K₁
Answer:
Limewater can be used to detect carbon dioxide. If carbon dioxide is bubbled through limewater then it turns from clear to cloudy/milky in colour. This is why limewater used in a simple respirometer can show that more carbon dioxide is present in exhaled air compared to inhaled air.
Explanation:
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Moons revolve around a planet, and planets revolve around the sun. Ganymede is considered a moon because it revolves around the planet Jupiter, therefore, it is a moon. :) I hope this helps!