Answer:
The statement "if the magnetic force is always perpendicular to the velocity, the path of the particle is a straight line" is false.
Explanation:
The equation for the magnetic force on a charge q moving at velocity v on a magnetic field B is given by the (vectorial) Lorentz Force Law 
From it we can clearly see that the <em>magnitude of the magnetic force </em>exerted on the particle is <em>proportional to the magnitude of the charge q and to the speed v of the particle</em>, and that it is also <em>perpendicular to the particle's velocity</em>. This means that at each instant it moves perpendicularly to the force, so <em>the work done by the magnetic force on the particle is zero</em>.
The statement "if the magnetic force is always perpendicular to the velocity, the path of the particle is a straight line" is false not only for this but for any force, a force always perpendicular to a velocity will curve the trajectory.
Answer:
50 T-shirt Design Ideas That Won't Wear Out - 99Designshttps://99designs.com › blog › creative-inspiration › t-s...
Whatever message your t-shirt needs to send, we've got 50 t-shirt design ... Illustrated chicken astronaut t-shirt ... of the challenges associated with a t-shirt for a business is getting people to wear it. ... shirt is a great way to create memorabilia that participants can look back on ... Graphic tees are what shirts were made for.
Explanation:
Answer:
Bar graph
Explanation:
each day collects data so a bar graph would work.
We have that the momentum p is given by the formula p=mv where m is the mass and v is the velocity. Since for A p=-14kgm/s and m=7, we have that the velocity is -14/7=-2m/s. Hence its speed is 2 m/s.
For b we have that p=15kgm/s and v=3m/s. Because m=p/v, we have m=3kg.
We also have that the momentum is conserved in this system. Hence, the net sum of the momentum of the 2 snowballs equals the momentum of the single giant ball. Hence, p(total)=p(combined)=-14+15=1kgm/s (momentum is a vector; the positive sign means that it tends to the positive direction).
Answer: motion parallax
Explanation:
Motion parallax refers to a form of depth perception whereby objects that are closer to an individual appears to move at a faster speed than the objects that are far.
Therefore, Kate is riding on a train and notices that the wildflowers by the side of the tracks seem to be moving by much faster than the mountains in the distance is an example of motion parallax.