Answer:
00.001 mol/h+
Explanation:
The ph of a solution is defined as the negative iogaristhum pf the hydrogen ion concentration(in mole)ph=log(h+)poh=-log
Answer:
1.89 g CaCO₃
Explanation:
You will have to use stoichiometry for this question. First, look at the chemical equation.
Na₂CO₃ + CaCl₂ ==> 2 NaCl + CaCO₃
From the above equation, you can see that for one mole of Na₂CO₃, you will produce one mole of CaCO₃. This means that however many moles of Na₂CO₃ you have in the beginning, you will have the same amount of moles of CaCO₃, theoretically speaking.
So, convert grams to moles. You should get 0.0189 mol Na₂CO₃. This means that you will get 0.0189 mol CaCO₃. I'm not sure what units you want the answer in, but I'm going to give it in grams. Convert moles to grams. Your answer should be 1.89 g.
A melting point of over 700 C and a density of less than 2 g/cm3 can be observed for many group 2 elements. In this group, the density increases on moving down the group, whereas the melting point increases upto calcium and then starts decreasing.
Calcium, symbol Ca is the element with melting point around 840 C and density of 1.55 g/cm3 which is closest to the specified data range .
Answer:
Honey
Explanation:
It’s honey because the item that was dropped in it is almost at the top and that means there is something sticky or force there holding it back!
Answer:

Explanation:
Hello,
In this case, since the density is defined as the ratio between the mass and the volume as shown below:

We can compute the density of water for the given 43 g that occupy the volume of 43 mL:

Regards.