Answer :
- Boiling point of the sugar solution will be higher than that of water's boling point.
- Freezing point of the sugar solution will be lower than that of water's freezing point.
Explanation:
- Boiling point of a liquid is defined as temperature at which vapor pressure of liquid becomes equal to the atmospheric pressure.
Boiling point of solution is always higher than that of the pure solvent
Vapor pressure increases with increase in temperature which means sugar solution will be heated more to make vapor pressure equal to atmospheric pressure.
- Freezing point is defined as temperature at which solid and liquid phase are at equilibrium or temperature at which vapor pressure of liquid becomes equal to the vapor pressure in its solid phase.
Freezing point of solution is always lower than that of the pure solvent.
Lower the temperature, lower will be the vapor pressure which sugar solution solution will get freeze at lower temperature than that of the water.
6.022×10^23 should be correct. Are there any options to choose from?
<u>Avogadros number</u>
Answer: 0.529 atm
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.998 atm
= final pressure of gas = ?
= initial volume of gas = 2 L
= final volume of gas = 3.5 L
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Thus the pressure if it is brought to a higher altitude where it now occupies 3.5 L and is at 12.0 °C is 0.529 atm
Answer is: the third reaction.
Elements in this chemical reaction do not change their oxidation number. Hydrogen has oxydation number +1, sulfur oxidation number is +6, oxygen has oxidation number -2 and barium has +2 on both sides of chemical reaction. In other reactions elements change their oxidation numbers.