1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
3 years ago
14

Ammonia reacts with diatomic oxygen to form nitric oxide and water vapor: 4 NH3 + 5 O2 → 4 NO + 6 H2O When 40.0 g NH3 and 50.0 g

O2 are allowed to react, what is the mass of the remaining excess reagent?
Chemistry
1 answer:
luda_lava [24]3 years ago
8 0

Answer:

18.75 g of NH3.

Explanation:

The balanced equation for the reaction is given below:

4NH3 + 5O2 → 4NO + 6H2O

Next, we shall determine the masses of NH3 and O2 that reacted from the balanced equation.

This can be obtained as follow:

Molar mass of NH3 = 14 + (3x1) = 17 g/mol

Mass of NH3 from the balanced equation = 4 x 17 = 68 g

Molar mass of O2 = 16x2 = 32 g/mol

Mass of O2 from the balanced equation = 5 x 32 = 160 g

From the balanced equation above,

68 g if NH3 reacted with 160 g of O2.

Next, we shall determine the excess reactant. This can be obtained as follow:

From the balanced equation above,

68 g if NH3 reacted with 160 g of O2.

Therefore, 40 g of NH3 will react with = (40 × 160)/68 = 94.12 g of O2.

From the calculations made above, we can see that it will take a higher amount of O2 i.e 94.12g than what was given i.e 50g to react completely with 40 g of NH3.

Therefore, O2 is the limiting reactant and NH3 is the excess reactant.

Next we shall determine the mass of excess reactant that reacted. This can be obtained as follow:

From the balanced equation above,

68 g if NH3 reacted with 160 g of O2.

Therefore, Xg of NH3 will react with 50 g of O2 i.e

Xg of NH3 = (68 × 50)/160

Xg of NH3 = 21.25 g

Therefore, 21.25 g of NH3 (excess reactant) were consumed in the reaction.

Finally, we shall determine mass of the remaining excess reactant as follow:

Mass of excess reactant = 40 g

Mass of excess reactant that reacted = 21.25 g

Mass of excess reactant remainig =?

Mass of excess reactant remainig = (Mass of excess reactant) – (Mass of excess reactant that reacted)

Mass of excess reactant remainig

= 40 – 21.25

= 18.75 g

Therefore, the mass of excess reactant remaining is 18.75 g of NH3.

You might be interested in
How many molecules are in 120 grams of Na2SO4
brilliants [131]

3.06 × 10^23 molecules

5 0
3 years ago
URGENT CHEMISTRY EXPERT!
vovangra [49]

Answer:

Part 1: 7.42 mL; Part 2: 3Cu²⁺(aq) + 2PO₄³⁻(aq) ⟶ 2Cu₃(PO₄)₂(s)

Explanation:

Part 1. Volume of reactant

(a) Balanced chemical equation.

\rm 2Na_{3}PO_{4} + 3CuCl_{2} \longrightarrow Cu_{3}(PO_{4})_{2} + 6NaCl

(b) Moles of CuCl₂

\text{Moles of CuCl}_{2} =\text{ 16.7 mL CuCl}_{2} \times \dfrac{\text{0.200 mmol CCl}_{2}}{\text{1 mL CuCl}_{2}} =  \text{3.340 mmol CuCl}_{2}

(c) Moles of Na₃PO₄

The molar ratio is 2 mmol Na₃PO₄:3 mmol CuCl₂

\text{Moles of Na$_{3}$PO}_{4} =  \text{3.340 mmol CuCl}_{2} \times \dfrac{\text{2 mmol Na$_{3}$PO}_{4}}{\text{3 mmol CuCl}_{2}} =\text{2.227 mmol Na$_{3}$PO}_{4}

(d) Volume of Na₃PO₄

V = \text{2.227 mmol Na$_{3}$PO}_{4}\times \dfrac{\text{1 mL Na$_{3}$PO}_{4}}{\text{0.300 mmol Na$_{3}$PO}_{4}} = \text{7.42 mL Na$_{3}$PO}_{4} \\\\\text{The reaction requires $\large \boxed{\textbf{7.42 mL Na$_{3}$PO}_{4}}$}

Part 2. Net ionic equation

(a) Molecular equation

\rm 2Na_{3}PO_{4}(\text{aq}) + 3CuCl_{2}(\text{aq}) \longrightarrow Cu_{3}(PO_{4})_{2}(\text{s}) + 6NaCl(\text{aq})

(b) Ionic equation

You write molecular formulas for the solids, and you write the soluble ionic substances as ions.

According to the solubility rules, metal phosphates are insoluble.

6Na⁺(aq) + 2PO₄³⁻(aq) + 3Cu²⁺(aq) + 6Cl⁻(aq) ⟶ Cu₃(PO₄)₂(s) + 6Na⁺(aq) + 6Cl⁻(aq)  

(c) Net ionic equation

To get the net ionic equation, you cancel the ions that appear on each side of the ionic equation.

<u>6Na⁺(aq)</u> + 2PO₄³⁻(aq) + 3Cu²⁺(aq) + <u>6Cl⁻(aq)</u> ⟶ Cu₃(PO₄)₂(s) + <u>6Na⁺(aq)</u> + <u>6Cl⁻(aq)</u>  

The net ionic equation is

3Cu²⁺(aq) + 2PO₄³⁻(aq) ⟶ Cu₃(PO₄)₂(s)

7 0
2 years ago
Differentiate benzene and cyclohexane
slega [8]
<span>• Benzene has the formula of C6H<span>6 </span>whereas cyclohexane has the formula of C6H<span>12.
</span></span>
Benzene is an aromatic compound but cyclohexane is not aromatic.

Benzene is an unsaturated molecule, but cyclohexane is saturated.
<span>
Carbon atoms in the benzene ring have sp2 hybridization where carbon atoms in the cyclohexane have sp3 hybridization.</span>
 
Benzene has a planar structure whereas cyclohexane has chair conformations.<span>
</span>
5 0
2 years ago
A sample of gas contains 0.1700 mol of OF2(g) and 0.1700 mol of H2O(g) and occupies a volume of 19.5 L. The following reaction t
andreev551 [17]

Answer: The volume of the sample after the reaction takes place is 29.25 L.

Explanation:

The given reaction equation is as follows.

OF_{2}(g) + H_{2}O(g) \rightarrow O_{2}(g) + 2HF(g)

So, moles of product formed are calculated as follows.

\frac{3}{2} \times 0.17 mol \\= 0.255 mol

Hence, the given data is as follows.

n_{1} = 0.17 mol,      n_{2} = 0.255 mol

V_{1} = 19.5 L,         V_{2} = ?

As the temperature and pressure are constant. Hence, formula used to calculate the volume of sample after the reaction is as follows.

\frac{V_{1}}{n_{1}} = \frac{V_{2}}{n_{2}}

Substitute the values into above formula as follows.

\frac{V_{1}}{n_{1}} = \frac{V_{2}}{n_{2}}\\\frac{19.5 L}{0.17 mol} = \frac{V_{2}}{0.255 mol}\\V_{2} = \frac{19.5 L \times 0.255 mol}{0.17 mol}\\= \frac{4.9725}{0.17} L\\= 29.25 L

Thus, we can conclude that the volume of the sample after the reaction takes place is 29.25 L.

8 0
2 years ago
Which lists the elements in order from least conductive to most conductive?
Savatey [412]

Answer: Option (A) is the correct answer.

Explanation:

Nitrogen is a non-metal and it is known that non-metals do not conduct electricity. Thus, it will be least conductive out of the given options.

Whereas antimony (Sb) is a metalloid. Metalloid are the substance that show properties of both metals and non-metals. Thus, antimony will conduct electricity.

On the other hand, bismuth (Bi) is a metal hence, it will conduct electricity.

Thus, we can conclude that the order from least conductive to most conductive will be nitrogen (N), antimony (Sb), bismuth (Bi).

 

7 0
3 years ago
Read 2 more answers
Other questions:
  • Add electron dots and charges as necessary to show the reaction of potassium and bromine to form an ionic compound
    6·2 answers
  • What happens when you add baking soda to ice
    10·1 answer
  • How do you find moles
    5·2 answers
  • A solution is prepared by dissolving 60.0 g of sucrose, C12H22O11, in 250. g of water at 25°C. What is the vapor pressure of the
    13·1 answer
  • Definition of deposition in science​
    8·2 answers
  • How many moles are there in 2.3 x 10^23 formula units of NaCl?
    5·1 answer
  • Which of the following has more atoms 3.14 g Cu or 1.10 g of H? Explain
    6·1 answer
  • If an object has a mass of 250 grams and a volume of 5 milliliters, what is the density of the object?
    10·1 answer
  • Which of the following correctly describes what happens to the kinetic energy of water when it changes from steam to a
    15·1 answer
  • Which molecules show an appropriate number of bonds around each carbon atom?.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!