1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
8

A county environmental agency suspects that the fish in a particular polluted lake have elevated mercury levels. To confirm that

suspicion, five striped bass in that lake were caught and their tissues tested for the presence of mercury. For the purposes of comparison, four striped bass in an unpolluted lake were also caught and tested. The fish tissue mercury levels in mg/kg are given below. (Note: You may wish to use Excel for this problem.) Sample 1 (polluted lake) Sample 2 (unpolluted lake) 0.580 0.382 0.711 0.276 0.571 0.570 0.666 0.366 0.598a. Construct the 95% confidence interval for the difference in the population means based on these data.b. Test, at the 5% significance level, whether the data provide sufficient evidence to conclude that fish in the polluted lake have elevated levels of mercury in their tissue.c. Do your answers to (a) and (b) agree or disagree? Explain.
Mathematics
1 answer:
suter [353]3 years ago
7 0

Answer:

a. The 95% confidence interval for the difference between means is (0.071, 0.389).

b. There is enough evidence to support the claim that the fish in this particular polluted lake have signficantly elevated mercury levels.

c. They agree. Both conclude that the levels of mercury are significnatly higher compared to a unpolluted lake.

In the case of the confidence interval, we reach this conclusion because the lower bound is greater than 0. This indicates that, with more than 95% confidence, we can tell that the difference in mercury levels is positive.

In the case of the hypothesis test, we conclude that because the P-value indicates there is a little chance we get that samples if there is no significant difference between the mercury levels. This indicates that the values of mercury in the polluted lake are significantly higher than the unpolluted lake.

Step-by-step explanation:

The table with the data is:

Sample 1 Sample 2

0.580    0.382

0.711      0.276

0.571     0.570

0.666    0.366

0.598

The mean and standard deviation for sample 1 are:

M=\dfrac{1}{5}\sum_{i=1}^{5}(0.58+0.711+0.571+0.666+0.598)\\\\\\ M=\dfrac{3.126}{5}=0.63

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{5}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{4}\cdot [(0.58-(0.63))^2+...+(0.598-(0.63))^2]}\\\\\\            s=\sqrt{\dfrac{1}{4}\cdot [(0.002)+(0.007)+(0.003)+(0.002)+(0.001)]}\\\\\\            s=\sqrt{\dfrac{0.015}{4}}=\sqrt{0.0037}\\\\\\s=0.061

The mean and standard deviation for sample 2 are:

M=\dfrac{1}{4}\sum_{i=1}^{4}(0.382+0.276+0.57+0.366)\\\\\\ M=\dfrac{1.594}{4}=0.4

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{4}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{3}\cdot [(0.382-(0.4))^2+(0.276-(0.4))^2+(0.57-(0.4))^2+(0.366-(0.4))^2]}\\\\\\            s=\sqrt{\dfrac{1}{3}\cdot [(0)+(0.015)+(0.029)+(0.001)]}\\\\\\            s=\sqrt{\dfrac{0.046}{3}}=\sqrt{0.015}\\\\\\s=0.123

<u>Confidence interval</u>

We have to calculate a 95% confidence interval for the difference between means.

The sample 1, of size n1=5 has a mean of 0.63 and a standard deviation of 0.061.

The sample 2, of size n2=4 has a mean of 0.4 and a standard deviation of 0.123.

The difference between sample means is Md=0.23.

M_d=M_1-M_2=0.63-0.4=0.23

The estimated standard error of the difference between means is computed using the formula:

s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{0.061^2}{5}+\dfrac{0.123^2}{4}}\\\\\\s_{M_d}=\sqrt{0.001+0.004}=\sqrt{0.005}=0.07

The critical t-value for a 95% confidence interval is t=2.365.

The margin of error (MOE) can be calculated as:

MOE=t\cdot s_{M_d}=2.365 \cdot 0.07=0.159

Then, the lower and upper bounds of the confidence interval are:

LL=M_d-t \cdot s_{M_d} = 0.23-0.159=0.071\\\\UL=M_d+t \cdot s_{M_d} = 0.23+0.159=0.389

The 95% confidence interval for the difference between means is (0.071, 0.389).

<u>Hypothesis test</u>

This is a hypothesis test for the difference between populations means.

The claim is that the fish in this particular polluted lake have signficantly elevated mercury levels.

Then, the null and alternative hypothesis are:

H_0: \mu_1-\mu_2=0\\\\H_a:\mu_1-\mu_2> 0

The significance level is 0.05.

The sample 1, of size n1=5 has a mean of 0.63 and a standard deviation of 0.061.

The sample 2, of size n2=4 has a mean of 0.4 and a standard deviation of 0.123.

The difference between sample means is Md=0.23.

M_d=M_1-M_2=0.63-0.4=0.23

The estimated standard error of the difference between means is computed using the formula:

s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{0.061^2}{5}+\dfrac{0.123^2}{4}}\\\\\\s_{M_d}=\sqrt{0.001+0.004}=\sqrt{0.005}=0.07

Then, we can calculate the t-statistic as:

t=\dfrac{M_d-(\mu_1-\mu_2)}{s_{M_d}}=\dfrac{0.23-0}{0.07}=\dfrac{0.23}{0.07}=3.42

The degrees of freedom for this test are:

df=n_1+n_2-1=5+4-2=7

This test is a right-tailed test, with 7 degrees of freedom and t=3.42, so the P-value for this test is calculated as (using a t-table):

\text{P-value}=P(t>3.42)=0.006

As the P-value (0.006) is smaller than the significance level (0.05), the effect is significant.

The null hypothesis is rejected.

There is enough evidence to support the claim that the fish in this particular polluted lake have signficantly elevated mercury levels.

<u> </u>

c. They agree. Both conclude that the levels of mercury are significnatly higher compared to a unpolluted lake.

In the case of the confidence interval, we reach this conclusion because the lower bound is greater than 0. This indicates that, with more than 95% confidence, we can tell that the difference in mercury levels is positive.

In the case of the hypothesis test, we conclude that because the P-value indicates there is a little chance we get that samples if there is no significant difference between the mercury levels. This indicates that the values of mercury in the polluted lake are significantly higher than the unpolluted lake.

You might be interested in
2 1/8 divided by 34?? Pls help, must be in fraction form
inn [45]
2 1/8=2.125 2.125?34=1/16
4 0
2 years ago
Read 2 more answers
The length of a rectangle is 3 less than twice the width. The perimeter is at least 210 cm. Find the smallest dimension of the r
SpyIntel [72]

check the picture below

5 0
3 years ago
Read 2 more answers
Please answer fast and with a short answer
o-na [289]

Answer:

=$61,472.00

Step-by-step explanation:

$18,472.00  of interest

+

43,000 borrowed

=$61,472.00

5 0
3 years ago
How do you change the answers into the correct number of digit?
Jobisdone [24]
What is the question here that I should answer?
7 0
3 years ago
Please help me answer this !!
andreev551 [17]

Answer:

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Please help me on #30 and explain thank you
    12·1 answer
  • Simplify and leave in radical form.<br><br><br><br><br> <img src="https://tex.z-dn.net/?f=%5Csqrt%7B3%5E%7B3%7D%20%5Csqrt%7B2%7D
    10·1 answer
  • The infinite geometric sum formula can be used to write 0.126126126...as a fraction. What is the numerator of this reduced fract
    13·2 answers
  • Write the algebraic expression that matches each graph
    10·1 answer
  • Simplify with positive exponents... Show your work.. <br><br> -6a^-3 b^9 c / 18a^2 b^-2 C^4
    14·2 answers
  • Which line is a graph of the equation 2x + 5y = 10?
    11·1 answer
  • About how many centimeters are in 6.25 inches if 1 inch is about 2.5
    6·1 answer
  • How much would you pay for 12.5 gallons of gasoline at $2.20per gallon?
    12·1 answer
  • Heyy could you help me out with this question I have been stuck in this question??​
    14·1 answer
  • I need help ASAP!’!!!!!!!!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!