A blackbody curve represents the relation between <u>intensity of radiation with wavelength.</u>
Here in this curve we can see that all ideal blackbody radiates almost all wavelength of radiations and these radiations are of different intensity.
here intensity will be maximum for a given wavelength of radiation and the relation of this wavelength with the temperature of the object is given by Wein's law
It is given by

now if we increase the temperature the maximum intensity for which wavelength is given will shift to the left.
Using this all we can also compare the temperature of two blackbody for which radiation graph is given to us.
<span>"Time is like wax, dripping from a candle flame. In the moment, it is molten and falling, with the capability to transform into any shape. Then the moment passes, and the wax hits the table top and solidifies into the shape it will always be. It becomes the past, a solid single record of what happened, still holding in its wild curves and contours the potential of every shape it could have held."</span>
Answer:
idk search it on google chrome
Explanation:
Answer:B
Explanation:
Initial velocity, u=0m/s
Distance,s=20m
a=+g=9.8m/s*s
Using v*v=u*u+2gs
v*v=0+2*9.8*20
v*v=392
v=19.8
When s=20m, v = 19.8m/s
Therefore when v = 10m/s, s= 10*20/19.8
s =10.1m
Positioning your Slinky along any direction different from its initial position will affect your reading, because there will be change in the magnetic field.
<h3>Effect of magnet on Slinky</h3>
If the Slinky is made of an iron alloy, it can be magnetized by itself. Moving the Slinky around can cause a change in the magnetic field, even if no current is flowing.
When there is a change in the magnetic field, the reading changes.
At any point, you change the orientation of the Slinky, you will need to zero the reading or adjust the Slinky back to its initial position, even if the sensor does not move.
Thus, Positioning your Slinky along any direction that is different to its initial position will affect your reading because there will be change in the magnetic field.
Learn more about magnetic field here: brainly.com/question/7802337