The correct answer as the first one above !
I think your question should be:
An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is
What is the rms value of (a) the electric field and
(b) the magnetic field in the electromagnetic wave emitted by the laser
Answer:
a)
b)
Explanation:
To find the RMS value of the electric field, let's use the formula:
Where
;
;
Therefore
b) to find the magnetic field in the electromagnetic wave emitted by the laser we use:
;
;
Answer:
the power that can be generated by the river is 117.6 MW
Explanation:
Given that;
Volume flow rate of river v = 240 m³/s
Height above the lake surface a h = 50 m
Amount of power can be generated from this river water after the dam is filled = ?
Now the collected water in the dam contains potential energy which is used for the power generation,
hence, total mechanical energy is due to potential energy alone.
= m(gh)
first we determine the mass flow rate of the fluid m
m = p×v
where p is density ( 1000 kg/m³
so we substitute
m = 1000kg/m³ × 240 m³/s
m = 240000 kg/s
so we plug in our values into ( = m(gh) kJ/kg )
= 240000 × 9.8 × 50
= 117600000 W
= 117.6 MW
Therefore, the power that can be generated by the river is 117.6 MW
Answer:
y = 2.74 m
Explanation:
The linear thermal expansion processes are described by the expression
ΔL = α L ΔT
Where α the thermal dilation constant for concrete is 12 10⁻⁶ºC⁻¹, ΔL is the length variation and ΔT the temperature variation in this case 20ªc
If the bridge is 250 m long and is covered by two sections each of them must be L = 125 m, let's calculate the variation in length
ΔL = 12 10⁻⁶ 125 20
ΔL = 3.0 10⁻² m
Let's use trigonometry to find the height
The hypotenuse Lf = 125 + 0.03 = 125.03 m
Adjacent leg L₀ = 125 m
cos θ = L₀ / Lf
θ = cos⁻¹ (L₀ / Lf)
θ = cos⁻¹ (125 / 125.03)
θ = 1,255º
We calculate the height
tan 1,255 = y / x
y = x tan 1,255
y = 125 tan 1,255
y = 2.74 m