Answer:
a

b

Explanation:
From the question we are told that
The wavelength of the light is 
The distance of the slit separation is 
Generally the condition for two slit interference is

Where m is the order which is given from the question as m = 2
=> ![\theta = sin ^{-1} [\frac{m \lambda}{d} ]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7Bm%20%5Clambda%7D%7Bd%7D%20%5D)
substituting values

Now on the second question
The distance of separation of the slit is

The intensity at the the angular position in part "a" is mathematically evaluated as
![I = I_o [\frac{sin \beta}{\beta} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%5Cbeta%7D%7B%5Cbeta%7D%20%5D%5E2)
Where
is mathematically evaluated as

substituting values


So the intensity is
![I = I_o [\frac{sin (0.06581)}{0.06581} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%280.06581%29%7D%7B0.06581%7D%20%5D%5E2)

Answer: C) divide: distance ÷ velocity
Explanation:
The velocity
equation is distance
divided by time
:

If we isolate
we will have:

Hence, the correct option is C: distance divided by velocity.
Since the direction of the force and the direction of the path is perpendicular, the person is not doing any physical work.
To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s