Answer:
Yes
Explanation:
The spring force is given as:
F = kd
F is the spring force
K is the spring constant
d is the magnitude of the stretch
Since k is a constant, therefore, doubling the stretch distance will double the force.
Both stretch distance and force applied can be said to be directly proportional to one another.
<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
High density
random words to fill up 20 character minimum for answering questions :P
4ms I'm just guessing by the way
Answer:

Explanation:
Using Newton's second law, we calculate the magnitude of the electric force between the spheres:

The magnitude of the charge in both spheres is the same. So, we calculate the charge, using Coulomb's law:
