Answer:
hello your question is incomplete attached below is the complete question
answer : The moment of inertial felt by someone ( J ) is greater that the moment of inertia felt by the motor i.e. J > Jm
Explanation:
Gear ratio G > 1
a) Determine the moment of inertia felt by the motor
moment of inertia felt by Motor = moment of Inertia at the armature
b) Determine the moment of inertial felt by someone who is rotating the mass by hand
moment of inertia felt by someone is = J
The moment of inertial felt by someone ( J ) is greater that the moment of inertia felt by the motor
attached below is a detailed solution
Electrical energy in the charger and cable
Chemical energy in the battery of the mobile phone
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
Answer:
52 rad
Explanation:
Using
Ф = ω't +1/2αt²................... Equation 1
Where Ф = angular displacement of the object, t = time, ω' = initial angular velocity, α = angular acceleration.
Since the object states from rest, ω' = 0 rad/s.
Therefore,
Ф = 1/2αt²................ Equation 2
make α the subject of the equation
α = 2Ф/t².................. Equation 3
Given: Ф = 13 rad, t = 2.5 s
Substitute into equation 3
α = 2(13)/2.5²
α = 26/2.5
α = 4.16 rad/s².
using equation 2,
Ф = 1/2αt²
Given: t = 5 s, α = 4.16 rad/s²
Substitute into equation 2
Ф = 1/2(4.16)(5²)
Ф = 52 rad.