It is D 14 MS. West. Kauehfbfnd
10 minutes I don’t know id this is right
Answer:
The fluids speed at a)
and b)
are
and
respectively
c) Th volume of water the pipe discharges is:
Explanation:
To solve a) and b) we should use flow continuity for ideal fluids:
(1)
With Q the flux of water, but Q is
using this on (1) we have:
(2)
With A the cross sectional areas and v the velocities of the fluid.
a) Here, we use that point 2 has a cross-sectional area equal to
, so now we can solve (2) for
:

b) Here we use point 2 as
:

c) Here we need to know that in this case the flow is the volume of water that passes a cross-sectional area per unit time, this is
, so we can write:
, solving for V:

Answer:
Explanation:
The difference in time will be due to travel through atmosphere where speed of light slows down. If t be the thickness of atmosphere and c be the speed of light in space and μ be the refractive index of atmosphere difference in travel time will be as follows .
difference = \frac{2t\mu }{c}-\frac{2t }{c}
=\frac{2t}{c }\left ( 1-\mu \right )
Now t = 40 x 10³m ,μ = 1.000293 , c = 3 x 10⁸.
difference =\frac{2t\mu }{c}-\frac{2t }{c}
=\frac{2t}{c }\left ( \mu -1 \right )\\
=\frac{ 2\times 40\times 10^3}{3\times10^3 }\left ( 1.000293-1 \right )\\
=7.81\times 10^{-3}
s