Answer:
Option B. O because the net force was 5 N in Alfredo's direction
Explanation:
To know the the correct answer to the question given above, we shall determine the net force acting on the bat. This can be obtained as follow:
Force of pull by Mason (Fₘ) = 15 N
Force of pull by Alfredo (Fₐ) = 20 N
Net force (Fₙ) =?
Fₙ = 20 – 15
Fₙ = 5 N in Alfredo's direction
From the calculation made above, we can see that the net force is 5N in Alfredo's direction. This is the reason why Alfredo end up having the bat.
Answer:
<h2>480</h2>
Explanation:
<h2>R=120÷0.25</h2><h2>R=480 ohms </h2>
because the unit for resistance is in ohms
Answer:
Explanation:
A proton of charge
q=+1.609×10^-19C
Orbit a radius of 12cm
r=0.12m
Magnetic Field of 0.31T
Angle between velocity and field is 90°
a. Because the magnetic force F supplies the centripetal force Fc.
The magnitude of the magnetic force F on a charge q moving at a speed v in a magnetic field of strength B is given by
F = qvB sin θ
And the centripetal force is given as
Fc=mv²/r
Where m is mass of proton
m=1.673×10^-27kg
Then, F=Fc
qvB sin θ=mv²/r
qBSin90=mv/r
rqB=mv
Then, v=rqB/m
v=0.12×1.609×10^-19×0.31/1.673×10^-23
v=3577692.78m/s
v=3.58×10^6m/s
b. Since,
F=qVBSin90
F=1.609×10^-19×3.58×10^6×0.31
F=1.785×10^-13 N.
Answer:
thermodynamics
Explanation:
The laws of thermodynamics define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium.
Answer:
Visible light
Explanation:
Electromagnetic spectrum is the classification of the electromagnetic waves according to their frequency/wavelength. In order from the shortest to the longest wavelength, we have
Gamma rays
X-rays
Ultraviolet
Visible light
Infrared
Microwaves
Radio waves
All these waves are invisible to human eye, except for the part referred as 'visible light'. The electromagnetic waves of this part of the spectrum are visible to human eye, and they appear as a different color depending on their wavelength. In particular, we have:
Violet: 380-450 nm
Blue: 450-495 nm
Green: 495-570 nm
Yellow: 570-590 nm
Orange: 590-620 nm
Red: 620-750 nm