Answer:
Explanation:
This is the equation that defines the power consumed by an electrical circuit. It is normally defined as the product of the voltage applied (V) times the current (I) that runs through it. And in the case of a resistive circuit (resistors in the circuit totaling a certain resistance R), one can use Ohm's law to replace the voltage by the product of the current (I) times the resistance (R), obtaining then the square of the current:

Answer:
<em>262.4 m/s</em>
<em></em>
Explanation:
The complete question is
If we ignore air resistance, a falling body will fall 16t^2 feet in t seconds. What is the average velocity between t=8 and t=8.4? Round your answer to two decimal places if necessary.
The distance fallen s = 16t^2
The velocity v =
= 32t
If we substitute the values of t into the velocity v, we'll have
at t = 8 s, V1 = 32 x 8 = 256 m/s
at t = 8.4 s, V2 = 32 x 8.4 = 268.8 m/s
Average velocity = (V2 - V1)/2 = (268.8 + 256)/2 = <em>262.4 m/s</em>
Answer:
Work done, W = 6153.31 Joules
Explanation:
It is given that,
Weight of piano, W = F = 7382 N
It is pushed 2.16 meters friction less plank
The angle with horizontal, 
When the piano slide up plank at a slow constant rate. The y component of force is taken into consideration. The net force acting on it is given by :

Work done is given by :



W = 6153.31 Joules
So, the work done in sliding the piano up the plank is 6153.31 Joules. Hence, this is the required solution.
Answer:
u = 104.68 m/s
Explanation:
given,
horizontal distance = 150 m
elevation of 12.4 m
angle = 8.6°
horizontal motion = x = u cos θ. t .............(1)
vertical motion =
................(2)
from equation(1) and (2)
..........{3}




u = 104.68 m/s
The initial speed of the ball is u = 104.68 m/s