mass and acceleration have a nice day
Answer:
(a) 333.77 J
(b) 237.85 J
(c) 4763.77 J
(d) 4667.85 J
Explanation:
Temperature of source, TH = 314 K
Temperature of A, Tc = 292 K
Temperature of B, Tc' = 298 K
heat taken out, Qc = 4430 J
Let the heat deposited outside is QH and QH' by A and B respectively.

Now

(a) Work done for A
W = QH - QC = 4763.77 - 4430 = 333.77 J
(b) Work done for B
W' = QH' - Qc = 4667.85 - 4430 = 237.85 J
(c) QH = 4763.77 J
(d) QH' = 4667.85 J
Answer:
They all hit at the same time
Explanation:
Let the time of flight is T.
The maximum height is H and the horizontal range is R.
The formula for the time of flight is
..... (1)
Te formula for the maximum height is
.... (2)
From equation (1) and (2), we get


here, we observe that the time of flight depends on the maximum height and according to the question, the maximum height for all the three balls is same so the time of flight of all the three balls is also same.
Answer:
Explanation:
Young's modulus of elasticity Y = stress / strain
stress = force / cross sectional area
= weight of 15 kg / π r²
= 15 x 9.8 / 3.14 x ( .025 x 10⁻² )²
stress = 74.9 x 10⁷ N / m²
strain = Δ L / L , Δ L is change in length and L is original length
Putting the values
strain = .0168 / 2.7 =.006222
Young's modulus of elasticity Y = 74.9 x 10⁷ / .006222
= 120.88 x 10⁹ N / m² .
Answer:
v_y = 14.55 m/s
Explanation:
given,
height at which gull is flying = 10.80 m
speed of the gull = 6 m/s
acceleration due to gravity = 9.8 m/s²
Relative to the seagull, the x-speed is 0,
because the seagull has the same x-speed.
Only the y-speed counts:
v_y = 14.55 m/s
hence, the speed at which the clam smash the rock is v_y = 14.55 m/s