To solve the problem it is necessary to apply the equations related to the Poiseuilles laminar flow law, with which the stationary laminar flow ΦV of an incompressible and uniformly viscous liquid (also called Newtonian fluid) can be determined through a cylindrical tube of constant circular section. Mathematically this can be expressed:

Where:
are the viscosities of the concrete before and after the increase
l = Length of the vessel
= Radio of the vessel before and after the increase
= Change in the pressure
The rates of flow before and after he increase
Our values are given as:
10 times her resting rate
95% of its normal value
Increase of 50%
Plugging known information to get







Therefore the factor of average radio of her blood vessels increased is 1.589 the initial factor after the increase.
Answer:
The magnitude of the acceleration is 
The direction is
i.e the negative direction of the z-axis
Explanation:
From the question we are that
The mass of the particle 
The charge on the particle is 
The velocity is 
The the magnetic field is 
The charge experienced a force which is mathematically represented as

Substituting value



Note :

Now force is also mathematically represented as

Making a the subject

Substituting values



Given :
An electron moving in the positive x direction experiences a magnetic force in the positive z direction.
To Find :
The direction of the magnetic field.
Solution :
We know, force is given by :

Here, q = -e.

Now, for above condition to satisfy :

So, 
Therefore, direction of magnetic field is negative y direction.
Hence, this is the required solution.
The mass needed at peg 1 is a 5g mass.
The 15g should hang at peg 5.
The reason is force x distance clockwise is equal to force x distance anti-clockwise
Answer: They have different rigidities.
Explanation: