Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.
Answer:
Explanation:
The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.
So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.
force on it due to rest of the charges will be equal and opposite so
k3q Q / x² =k 8q Q / (L+x)²
8x² = 3 (L+x)²
2√2 x = √3 (L+x)
2√2 x - √3 x = √3 L
x(2√2 - √3 ) = √3 L
x = √3 L / (2√2 - √3 )
Let us consider the balancing force on 3q
force on it due to -Q and -8q will be equal
kQ . 3q / x² = k3q 8q / L²
Q = 8q (x² / L²)
so charge required = - 8q (x² / L²)
and its distance from x on negative x side = √3 L / (2√2 - √3 )
Water? The sun. I DUNNO I FEEL BAD :(
Answer:
<h2>39.2 m</h2>
Explanation:
The height of the hill side can be found by using the formula

p is the potential energy
m is the mass
From the question we have

We have the final answer as
<h3>39.2 m</h3>
Hope this helps you
Answer:
5 m/s2, left
Explanation:
We can solve the problem by applying Newton's second law of motion, which states that:

where:
is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have:
(to the left) is the net force on the object
m = 2.0 kg is the mass
So, the acceleration is:
in the same direction as the force (left).