Answer:
The velocity is 31.25 m/s and direction is toward west.
Explanation:
Given that,
Distance ![h= 1790 km = 1.790\times10^{6}\ m](https://tex.z-dn.net/?f=h%3D%201790%20km%20%3D%201.790%5Ctimes10%5E%7B6%7D%5C%20m)
Magnetic field ![B=4\times10^{-8}\ T](https://tex.z-dn.net/?f=B%3D4%5Ctimes10%5E%7B-8%7D%5C%20T)
Mass of proton ![m=1.673\times10^{-21}\ Kg](https://tex.z-dn.net/?f=m%3D1.673%5Ctimes10%5E%7B-21%7D%5C%20Kg)
Radius of earth ![R =6.38\times10^{6}\ m](https://tex.z-dn.net/?f=R%20%3D6.38%5Ctimes10%5E%7B6%7D%5C%20m)
Radius of orbit ![r=R+h](https://tex.z-dn.net/?f=r%3DR%2Bh)
![r=6.38\times10^{6}+1.790\times10^{6}](https://tex.z-dn.net/?f=r%3D6.38%5Ctimes10%5E%7B6%7D%2B1.790%5Ctimes10%5E%7B6%7D)
![r=8170000\ m](https://tex.z-dn.net/?f=r%3D8170000%5C%20m)
We need to calculate the speed
Using formula of magnetic field
![Bvq=\dfrac{mv^2}{r}](https://tex.z-dn.net/?f=Bvq%3D%5Cdfrac%7Bmv%5E2%7D%7Br%7D)
![v=\dfrac{Bqr}{m}](https://tex.z-dn.net/?f=v%3D%5Cdfrac%7BBqr%7D%7Bm%7D)
Put the value into the formula
![v=\dfrac{4\times10^{-8}\times1.6\times10^{-19}\times8170000}{1.673\times10^{-21}}](https://tex.z-dn.net/?f=v%3D%5Cdfrac%7B4%5Ctimes10%5E%7B-8%7D%5Ctimes1.6%5Ctimes10%5E%7B-19%7D%5Ctimes8170000%7D%7B1.673%5Ctimes10%5E%7B-21%7D%7D)
![v=31.25\ m/s](https://tex.z-dn.net/?f=v%3D31.25%5C%20m%2Fs)
Hence, The velocity is 31.25 m/s and direction is toward west.
Answer:
i put this in the calculator and my answer is 600. hope this helps
Explanation:
The initial momentum of the system can be expressed as,
![p_i=m_1u_1+m_{2_{}}u_2](https://tex.z-dn.net/?f=p_i%3Dm_1u_1%2Bm_%7B2_%7B%7D%7Du_2)
The final momentum of the system can be given as,
![p_f=m_1v_1+m_{2_{}}v_2](https://tex.z-dn.net/?f=p_f%3Dm_1v_1%2Bm_%7B2_%7B%7D%7Dv_2)
According to conservation of momentum,
![p_i=p_f](https://tex.z-dn.net/?f=p_i%3Dp_f)
Plug in the known expressions,
![\begin{gathered} m_1u_1+m_2u_2=m_1v_1+m_2v_2 \\ m_2v_2=m_1u_1+m_2u_2-m_1v_1 \\ v_2=\frac{m_1u_1+m_2u_2-m_1v_1}{m_2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20m_1u_1%2Bm_2u_2%3Dm_1v_1%2Bm_2v_2%20%5C%5C%20m_2v_2%3Dm_1u_1%2Bm_2u_2-m_1v_1%20%5C%5C%20v_2%3D%5Cfrac%7Bm_1u_1%2Bm_2u_2-m_1v_1%7D%7Bm_2%7D%20%5Cend%7Bgathered%7D)
Initially, the second mass move towards the first mass therefore the initial speed of second mass will be taken as negative and the recoil velocity of first mass is also taken as negative.
Plug in the known values,
![\begin{gathered} v_2=\frac{(1.16\text{ kg)(8.64 m/s)+(1.98 kg)(-3.34 m/s)-(1.16 kg)(-2.16 m/s)}}{1.98\text{ kg}} \\ =\frac{10.02\text{ kgm/s-}6.61\text{ kgm/s+}2.51\text{ kgm/s}}{1.98\text{ kg}} \\ =\frac{5.92\text{ kgm/s}}{1.98\text{ kg}} \\ \approx2.99\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_2%3D%5Cfrac%7B%281.16%5Ctext%7B%20kg%29%288.64%20m%2Fs%29%2B%281.98%20kg%29%28-3.34%20m%2Fs%29-%281.16%20kg%29%28-2.16%20m%2Fs%29%7D%7D%7B1.98%5Ctext%7B%20kg%7D%7D%20%5C%5C%20%3D%5Cfrac%7B10.02%5Ctext%7B%20kgm%2Fs-%7D6.61%5Ctext%7B%20kgm%2Fs%2B%7D2.51%5Ctext%7B%20kgm%2Fs%7D%7D%7B1.98%5Ctext%7B%20kg%7D%7D%20%5C%5C%20%3D%5Cfrac%7B5.92%5Ctext%7B%20kgm%2Fs%7D%7D%7B1.98%5Ctext%7B%20kg%7D%7D%20%5C%5C%20%5Capprox2.99%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
Thus, the final velocity of second mass is 2.99 m/s.