The exercise is already scheduled, so we just follow the instruction:
1: Given two points
and
, the equation of the line passing through the two points is given by
![\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx-x_1%7D%7Bx_2-x_1%7D%3D%5Cdfrac%7By-y_1%7D%7By_2-y_1%7D)
In your case, we have
![\dfrac{x-1}{9-1}=\dfrac{y-14}{10-14} \iff \dfrac{x-1}{8}=\dfrac{y-14}{-4} \iff x-1=28-2y](https://tex.z-dn.net/?f=%5Cdfrac%7Bx-1%7D%7B9-1%7D%3D%5Cdfrac%7By-14%7D%7B10-14%7D%20%5Ciff%20%5Cdfrac%7Bx-1%7D%7B8%7D%3D%5Cdfrac%7By-14%7D%7B-4%7D%20%5Ciff%20x-1%3D28-2y)
To put this equation into standard form, we have
![x-1=28-2y \iff 2y = -x+1+28 \iff y = -\dfrac{x}{2}+\dfrac{29}{2}](https://tex.z-dn.net/?f=x-1%3D28-2y%20%5Ciff%202y%20%3D%20-x%2B1%2B28%20%5Ciff%20y%20%3D%20-%5Cdfrac%7Bx%7D%7B2%7D%2B%5Cdfrac%7B29%7D%7B2%7D)
2: By the exact same logic, the line that represents Kelsa's training progress is given by
![\dfrac{x-1}{8-1}=\dfrac{y-11}{9-11} \iff \dfrac{x-1}{7}=\dfrac{y-11}{-2} \iff 2(x-1)=-7(y-11)](https://tex.z-dn.net/?f=%5Cdfrac%7Bx-1%7D%7B8-1%7D%3D%5Cdfrac%7By-11%7D%7B9-11%7D%20%5Ciff%20%5Cdfrac%7Bx-1%7D%7B7%7D%3D%5Cdfrac%7By-11%7D%7B-2%7D%20%5Ciff%202%28x-1%29%3D-7%28y-11%29)
Solving for y yields
![2(x-1)=-7(y-11) \iff 2x-2=-7y+77 \iff 7y=-2x+2+79](https://tex.z-dn.net/?f=2%28x-1%29%3D-7%28y-11%29%20%5Ciff%202x-2%3D-7y%2B77%20%5Ciff%207y%3D-2x%2B2%2B79)
and finally
![y=\dfrac{-2x}{7}+\dfrac{79}{7}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B-2x%7D%7B7%7D%2B%5Cdfrac%7B79%7D%7B7%7D)
3: We have the following system:
![\begin{cases}y = -\frac{x}{2}+\frac{29}{2}\\y=\frac{-2x}{7}+\frac{79}{7}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dy%20%3D%20-%5Cfrac%7Bx%7D%7B2%7D%2B%5Cfrac%7B29%7D%7B2%7D%5C%5Cy%3D%5Cfrac%7B-2x%7D%7B7%7D%2B%5Cfrac%7B79%7D%7B7%7D%5Cend%7Bcases%7D)
Since both equations are solved for y, we deduce that the two right hand sides must be equal:
![-\dfrac{x}{2}+\dfrac{29}{2}=\dfrac{-2x}{7}+\dfrac{79}{7}](https://tex.z-dn.net/?f=-%5Cdfrac%7Bx%7D%7B2%7D%2B%5Cdfrac%7B29%7D%7B2%7D%3D%5Cdfrac%7B-2x%7D%7B7%7D%2B%5Cdfrac%7B79%7D%7B7%7D)
Multiply both equations by 14 to get rid of the denominators:
![-7x+203=-4x+158 \iff 3x=45 \iff x=15](https://tex.z-dn.net/?f=-7x%2B203%3D-4x%2B158%20%5Ciff%203x%3D45%20%5Ciff%20x%3D15)
Plug this value for x in one of the equations:
![y = -\dfrac{15}{2}+\dfrac{29}{2}=7](https://tex.z-dn.net/?f=y%20%3D%20-%5Cdfrac%7B15%7D%7B2%7D%2B%5Cdfrac%7B29%7D%7B2%7D%3D7)
4: Since x represents the number of weeks, and x = 7 is the solution of the system, after 7 weeks they will habe the same average minute per mile
5: We have the equations that represent the times of the two girls, depending on time. So, we simply have to plug x=30 in the equations to get the times after 30 weeks: for Alana we have
![f(x) = -\dfrac{x}{2}+\dfrac{29}{2}\implies f(30)=-\dfrac{30}{2}+\dfrac{29}{2}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-%5Cdfrac%7Bx%7D%7B2%7D%2B%5Cdfrac%7B29%7D%7B2%7D%5Cimplies%20f%2830%29%3D-%5Cdfrac%7B30%7D%7B2%7D%2B%5Cdfrac%7B29%7D%7B2%7D)
which evaluates to
![f(30)=-15+\dfrac{29}{2}=-\dfrac{1}{2}](https://tex.z-dn.net/?f=f%2830%29%3D-15%2B%5Cdfrac%7B29%7D%7B2%7D%3D-%5Cdfrac%7B1%7D%7B2%7D)
And for Kelsa we have
![f(x) = \dfrac{-2x}{7}+\dfrac{79}{7}\implies f(30)=\dfrac{-2\cdot 30}{7}+\dfrac{79}{7}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cdfrac%7B-2x%7D%7B7%7D%2B%5Cdfrac%7B79%7D%7B7%7D%5Cimplies%20f%2830%29%3D%5Cdfrac%7B-2%5Ccdot%2030%7D%7B7%7D%2B%5Cdfrac%7B79%7D%7B7%7D)
which evaluates to
![f(30)=-\dfrac{60}{7}+\dfrac{79}{7}=\dfrac{19}{7}](https://tex.z-dn.net/?f=f%2830%29%3D-%5Cdfrac%7B60%7D%7B7%7D%2B%5Cdfrac%7B79%7D%7B7%7D%3D%5Cdfrac%7B19%7D%7B7%7D)