The X-axis of the H-R Diagram indicates the star's surface temperature in degrees Kelvin. The Y-axis, on the other hand, indicates luminosity, or brightness.
Main sequence refers to a roughly diagonal, slightly S-curved line stretching between the upper-left and lower-right corners on which main sequence stars chart. They maintain a predictable relationship between luminosity and temperature: the brighter, the hotter. The upper-right quadrant of the H-R diagram is home to newly discovered red giants while the lower-left quadrant of the H-R Diagram belongs almost exclusively to white dwarfs.
Answer:
option a.
Explanation:
We can think of an atom as a nucleus (where the protons and neutrons are) and some electrons orbiting it.
We also know that the mass of an electron is a lot smaller than the mass of a proton or the mass of an electron.
So, if all the protons and electrons of an atom are in the nucleus, we know that most of the mass of an atom is in the nucleus of that atom.
Then we define the mass number, which is the total number of protons and neutrons in an atom. Such that the mass of a proton (or a neutron) is almost equal to 1u
Then if we define A as the total number of protons and neutrons, and each one of these weights about 1u
(where u = atomic mass unit)
Then the weight of the nucleus is about A times 1u, or:
A*1u = A atomic mass units.
Then the correct option is:
The mass of the nucleus is approximately EQUAL to the mass number multiplied by __1__ Atomic Mass unit.
option a.
Answer:
66.5N
Explanation:
F = kx
Where F = force
K = spring constant
x = compression
Given
K = 950N/m
x = 7.0cm
F = ?
First convert the compression to meters .
7.0cm = 7.0 x 0.01
= 0.07 meters
Therefore
F = 950 x 0.07
= 66.5N
The era after the KT event occurred
The mass needed at peg 1 is a 5g mass.
The 15g should hang at peg 5.
The reason is force x distance clockwise is equal to force x distance anti-clockwise