1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
statuscvo [17]
3 years ago
8

PLZ HELP!

Physics
2 answers:
RoseWind [281]3 years ago
4 0
<h2>Answer:</h2>

<u>The correct option is</u><u> (C) its greater tensile strength </u>

<h2>Explanation:</h2>

Elasticity is the property of any material to return to its original shape when it is de-shaped. for example a spring comes to its original shape when it is stretched and then released. so the property that brings the spring back to its original form is called elasticity. On the other hand tensile strength is the maximum stress that a material can withstands before it breaks. Since polymers are also elastic so the greater tensile strength means greater elasticity.

Oksi-84 [34.3K]3 years ago
4 0

I believe it would be D, the synthetic composure.

You might be interested in
Why is pseudoscience bad?
USPshnik [31]

Answer:

It is quite difficult to picture a pseudoscientist—really picture him or her over the course of a day, a year, or a whole career. What kind or research does he or she actually do, what differentiates him or her from a carpenter, or a historian, or a working scientist? In short, what do such people think they are up to?

… it is a significant point for reflection that all individuals who have been called “pseudoscientists” have considered themselves to be “scientists”, with no prefix.

The answer might surprise you. When they find time after the obligation of supporting themselves, they read papers in specific areas, propose theories, gather data, write articles, and, maybe, publish them. What they imagine they are doing is, in a word, “science”. They might be wrong about that—many of us hold incorrect judgments about the true nature of our activities—but surely it is a significant point for reflection that all individuals who have been called “pseudoscientists” have considered themselves to be “scientists”, with no prefix.

What is pseudoscience?

“Pseudoscience” is a bad category for analysis. It exists entirely as a negative attribution that scientists and non‐scientists hurl at others but never apply to themselves. Not only do they apply the term exclusively as a discrediting slur, they do so inconsistently. Over the past two‐and‐a‐quarter centuries since the term popped into the Western European languages, a great number of disparate doctrines have been categorized as sharing a core quality—pseudoscientificity, if you will—when in fact they do not. It is based on this diversity that I refer to such beliefs and theories as “fringe” rather than as “pseudo”: Their defining characteristic is the distance from the center of the mainstream scientific consensus in whichever direction, not some essential property they share.

Scholars have by and large tended to ignore fringe science as regrettable sideshows to the main narrative of the history of science, but there is a good deal to be learned by applying the same tools of analysis that have been used to understand mainstream science. This is not, I stress, to imply that there is no difference between hollow‐Earth theories and geophysics; on the contrary, the differences are the point of the analysis. Focusing on the historical and conceptual relationship between the fringe and the core of the various sciences as that blurry border has fluctuated over the centuries provides powerful analytical leverage for understanding where contemporary anti‐science movements come from and how mainstream scientists might address them.

As soon as professionalization blossomed, tagging competing theories as pseudoscientific became an important tool for scientists to define what they understood science to be

The central claim of this essay is that the concept of “pseudoscience” was called into being as the shadow of professional science. Before science became a profession—with formalized training, credentialing, publishing venues, careers—the category of pseudoscience did not exist. As soon as professionalization blossomed, tagging competing theories as pseudoscientific became an important tool for scientists to define what they understood science to be. In fact, despite many decades of strenuous effort by philosophers and historians, a precise definition of “science” remains elusive. It should be noted however that the absence of such definitional clarity has not seriously inhibited the ability of scientists to deepen our understanding of nature tremendously.

Explanation:

8 0
2 years ago
Would sound travel faster in an oven or a freezer?
statuscvo [17]

Answer:

An Oven

Explanation:

The heat is higher, so it moves faster. Shile in a freezer the particles are extremely slow!

6 0
3 years ago
A person is standing on a raft; their
krok68 [10]

Answer:

The volume of water displaced by the raft is 0.233 m³

Explanation:

The question relates to Archimedes' principle which states that the buoyant force experienced by an object immersed in a fluid is equal to the weight of (the force of gravity on) the displaced fluid

The given parameters are;

The combined mass of the person and the raft, m = 233 kg

The liquid on which the raft is located = Water

The density of water, \rho _{water} = 1000 kg/m³

Weight = Mass, m × g

Where;

m = The mass of the object

g = The acceleration due to gravity = 9.8 m/s²

Given that the raft is on the surface of the water (floating), the buoyant force is equal to the combined weight of the person and the raft = 233 kg

The combined weight of the person and the raft, W_{combined} = 233 kg × 9.8 m/s² = 2,283.4 N

Therefore;

The buoyant force = 2,283.4 N = The weight of the water displaced

The mass of the water displaced, m_{water}, = 2,283.4 N/(9.8 m/s²) = 233 kg

Density = Mass/Volume

The volume of water displaced by the raft = The mass of the water displaced/(The density of the water) = 233 kg/(1,000 kg/m³) = 0.233 m³.

3 0
2 years ago
Read 2 more answers
Raj is trying to make a diagram to show what he has learned about nuclear fusion.
KIM [24]

No, he should place the He atom and energy on the right, and the H atoms and the heat and energy on the left.

6 0
3 years ago
Read 2 more answers
______ interference occurs when two waves overlap and the resulting wave has a larger amplitude.
ratelena [41]
Constructive is correct
8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the lateral surface area of a cylinder with height of 7 m and a base diameter of 4 m (to the nearest whole number)?
    9·1 answer
  • The length of the minute hand of the clock is 14cm. Calculate the speed with which the tip of the minute hand moves
    7·1 answer
  • Label these parts on the wave below: Amplitude, Wavelength, Crest, Trough, Rest Position
    6·1 answer
  • Review Conceptual Example 16 as background for this problem. The water skier there has a mass of 73 kg. Find the magnitude of th
    7·1 answer
  • A nonconducting sphere has radius R = 2.81 cm and uniformly distributed charge q = +2.35 fC. Take the electric potential at the
    7·1 answer
  • Identify two factors that determine the intensity of sound
    14·1 answer
  • A 2.0 m conductor is formed into a square and placed in the horizontal xy-plane. Magnetic field is oriented 30.0° above the hori
    7·1 answer
  • If a ball dropped from a tower reaches the ground after 3.5 seconds, what is the height of the tower? Given: g = –9.8 meters/sec
    14·1 answer
  • if 130N centripetal force is needed to keep a 0.45kg ball that is attached to a string that is 0.7m long to complete 5 full rota
    13·1 answer
  • Which of the following explanations is correct about the wave that travels through the medium?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!