Answer:
Counterclockwise
explanation in attachment
Answer:
T'=92.70°C
Explanation:
To find the temperature of the gas you use the equation for ideal gases:

V: volume = 3000cm^3 = 3L
P: pressure = 1250mmHg; 1 mmHg = 0.001315 atm
n: number of moles
R: ideal gas constant = 0.082 atm.L/mol.K
T: temperature = 27°C = 300.15K
For the given values you firs calculate the number n of moles:
![n=\frac{PV}{RT}=\frac{(1520[0.001315atm])(3L)}{(0.082\frac{atm.L}{mol.K})(300.15K)}=0.200moles](https://tex.z-dn.net/?f=n%3D%5Cfrac%7BPV%7D%7BRT%7D%3D%5Cfrac%7B%281520%5B0.001315atm%5D%29%283L%29%7D%7B%280.082%5Cfrac%7Batm.L%7D%7Bmol.K%7D%29%28300.15K%29%7D%3D0.200moles)
this values of moles must conserve when the other parameter change. Hence, you have V'=2L and P'=3atm. The new temperature is given by:

hence, T'=92.70°C
Answer:
Your question was incomplete so here is the complete question and answer.
Q. When exercising in the heat, which of the following hydration strategies is best for temperature regulation during an event (e.g., 10K race)
a) plain water
b) 5-7 percent glucose solution
c) Glucose polymer solution of 6-8 percent
d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.
Ans. d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.
Explanation:
Temperature Regulation is an important phenomenon for the person exposed to extreme hot conditions or weather. Exercising in hot conditions increase the body temperature. Greater and intense exercise, greater the production of heat. Then the heat dissipation takes place in the form of excessive sweating which results in dehydration. That was just the brief overview of temperature regulation. Above mentioned techniques are equally good hydration techniques so there is no difference at all. You can have a plain water or glucose solutions of above mentioned percentages.
The first law of Newton’s law state an object in motion will stay in motion and an object at rest will stay at rest unless acted upon with an outside force. Other know as the law of inertia so yes it does
Answer:
a)
, b) 
Explanation:
a) The minimum coeffcient of friction is computed by the following expression derived from the Principle of Energy Conservation:




b) The speed of the block is determined by using the Principle of Energy Conservation:




The radius of the circular loop is:


