You mark the y intercept, and then if the slope is a whole number you give it a denominator of 1, or if it is already a fraction observe, rise over run to calculate each point in the line over the graph.
Answer:
just count the spaces between (-4, -3) (-2,0)
Step-by-step explanation:
use rise and run or sum else
Answer:
5
Step-by-step explanation:
the answer is 5 because when you add up all the numbers and divide it by how many they are, the answer is 5
∠13 = 70.5° [Vertically Opposite angles]
∠13+∠14=180° [Linear pair]
70.5°+∠14=180°
∠14=180-70.5
∠14=109.5
∠15=∠14=109.5 [Vertically opposite angles]
∠13=∠12= 70.5° [Co-interior angles]
∠12=∠10= 70.5° [Vertically Opposite angles]
∠14=∠11=109.5 [Co-interior angles]
∠9=∠11= 109.5 [Vertically opposite angles]
∠13=∠7= 70.5° [Alternate interior angles]
∠7=∠5=70.5° [Vertically Opposite angles]
∠7+∠8=180° [Linear Pair]
70.5+∠8=180
∠8=180-70.5
∠8=109.5°
∠8=∠6= 109.5° [Vertically Opposite angles]
∠6=∠3=109.5° [Co-interior angles]
∠7=∠2=70.5° [Co-exterior angles]
∠2=∠4= 70.5° [Vertically Opposite angles]
∠3=∠1= 109.5° [Vertically Opposite angles]

<h3>Measures of all angles in sequence⤵️</h3>
- ∠1= 109.5°
- ∠2= 70.5°
- ∠3= 109.5°
- ∠4= 70.5°
- ∠5= 70.5°
- ∠6= 109.5°
- ∠7= 70.5°
- ∠8= 109.5°
- ∠9= 109.5°
- ∠10= 109.5°
- ∠11= 70.5°
- ∠12= 109.5°
- ∠13= 70.5°
- ∠14= 109.5°
- ∠15= 109.5°
- ∠16= 70.5°
Apply the Pyth Thm twice:
diagonal of base is sqrt(4^2+6^2).
Then the length of diagonal AB is L = [sqrt(4^2+6^2)]^2 + [sqrt(1)]^2