1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
7

a jet fighter accelerates at 17.7 m/s^2 , increasing its velocity from 119 m/s to 233 m/s. how much time does that take?

Physics
1 answer:
Aleksandr-060686 [28]3 years ago
7 0

Answer:

6.44 s

Explanation:

Given:

v₀ = 119 m/s

v = 233 m/s

a = 17.7 m/s²

Find: t

v = at + v₀

(233 m/s) = (17.7 m/s²) t + (119 m/s)

t = 6.44 s

You might be interested in
Compare the circular velocity of a particle orbiting in the Encke Division, whose distance from Saturn 133,370 km, to a particle
Ket [755]

Answer:

The particle in the D ring is 1399 times faster than the particle in the Encke Division.

Explanation:

The circular velocity is define as:

v = \frac{2 \pi r}{T}  

Where r is the radius of the trajectory and T is the orbital period

To determine the circular velocity of both particles it is necessary to know the orbital period of each one. That can be done by means of the Kepler’s third law:

T^{2} = r^{3}

Where T is orbital period and r is the radius of the trajectory.

Case for the particle in the Encke Division:

T^{2} = r^{3}

T = \sqrt{(133370 Km)^{3}}

T = \sqrt{(2.372x10^{15} Km)}

T = 4.870x10^{7} Km

It is necessary to pass from kilometers to astronomical unit (AU), where 1 AU is equivalent to 150.000.000 Km ( 1.50x10^{8} Km )

1 AU is defined as the distance between the earth and the sun.

\frac{4.870x10^{7} Km}{1.50x10^{8}Km} . 1AU

T = 0.324 AU

But 1 year is equivalent to 1 AU according with Kepler’s third law, since 1 year is the orbital period of the earth.

T = \frac{0.324 AU}{1 AU} . 1 year

T = 0.324 year

That can be expressed in units of days

T = \frac{0.324 year}{1 year} . 365.25 days  

T = 118.60 days

<em>Circular velocity for the particle in the </em><em>Encke Division</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (133370 Km)}{(118.60 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

118.60 days .\frac{86400 s}{1 day} ⇒ 10247040 s

133370 Km .\frac{1000 m}{1 Km} ⇒ 133370000 m

v = \frac{2 \pi (133370000 m)}{(10247040 s)}

v = 81.778 m/s

Case for the particle in the D Ring:

For the case of the particle in the D Ring, the same approach used above can be followed

T^{2} = r^{3}

T = \sqrt{(69000 Km)^{3}}

T = \sqrt{(3.285x10^{14} Km)}

T = 1.812x10^{7} Km

\frac{1.812x10^{7} Km}{1.50x10^{8}Km} . 1 AU

T = 0.120 AU

T = \frac{0.120 AU}{1 AU} . 1 year

T = 0.120 year

T = \frac{0.120 year}{1 year} . 365.25 days  

T = 43.83 days

<em>Circular velocity for the particle in </em><em>D Ring</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (69000 Km)}{(43.83 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

43.83 days . \frac{86400 s}{1 day} ⇒ 3786912 s

69000 Km . \frac{1000 m}{ 1 Km} ⇒ 69000000 m

v = \frac{2 \pi (69000000 m)}{(3786912 s)}

v = 114.483 m/s

 

\frac{114.483 m/s}{81.778 m/s} = 1.399            

The particle in the D ring is 1399 times faster than the particle in the Encke Division.  

7 0
3 years ago
A 65-kg person stands on a scale in a moving elevator while holding a 5.0 kg mass suspended from a massless spring with spring c
disa [49]

Answer:

The question is incomplete. However, I believe, it is asking for the acceleration of the elevator. This is 3.16 m/s².

Explanation:

By Hooke's law, F = ke

F is the force on a spring, k is the spring constant and e is the extension or compression.

From the question,

F = (1.08\text{ kN/m}) \times (6.0 \times 10^{-2}\text{ m}) = 64.8 \text{ N}

This is the force on the mass suspended on the spring. Its acceleration, a, is given by

F = ma

a = \dfrac{F}{m}

a = \dfrac{64.8 \text{ N}}{5\text{ kg}} = 12.96\text{ m/s}^2

This acceleration is more than the acceleration due to gravity, g = 9.8 m/s². Hence the elevator must be moving up with an acceleration of

12.96 - 9.8 m/s² = 3.16 m/s²

7 0
3 years ago
X-rays with frequency 3 ⨉ 10 18 Hz shine on a crystal, producing an interference pattern. If the first bright spot is observed a
FrozenT [24]

Answer:

5.1645\times 10^{-11}\ m

Explanation:

n = Order = 1

c = Speed of light = 3\times 10^8\ m/s

f = Frequency = 3\times 10^{18}\ Hz

\theta = Angle = 75.5^{\circ}

Lattice spacing is given by

d=\dfrac{n\lambda}{2\sin\theta}\\\Rightarrow d=\dfrac{n\times c}{f2\sin\theta}\\\Rightarrow d=\dfrac{1\times 3\times 10^{8}}{3\times 10^{18}\times 2\times \sin75.5^{\circ}}\\\Rightarrow d=5.1645\times 10^{-11}\ m

The lattice spacing of the crystal is 5.1645\times 10^{-11}\ m

6 0
3 years ago
A watt equals
Valentin [98]

Answer:

1 joule of energy per second :)

Explanation:

4 0
3 years ago
At the instant a traffic light turns green, a car starts with a constant acceleration of 1.3 m/s2. At the same instant a truck,
Bas_tet [7]

Answer:

(a) Distance traveled = 75.3846 m

(b) Velocity of car at that instant will be 14 m/sec

Explanation:

We have given acceleration of the car a=1.3m/sec^2

Initial velocity of the cart u = 0 m/sec

(a) According to second equation of motion we know that s=ut+\frac{1}{2}at^2

So distance traveled by car s_c=0\times t+\frac{1}{2}\times 1.3t^2=0.65t^2

As the truck is moving with constant speed

So distance traveled by truck s_t=ut=7t

As the truck overtakes the car

So s_c=s_t

0.65t^2=7t

t=10.769sec

So distance traveled s_c=s_t=7\times 10.769=75.3846m

(b) From second equation of motion we know that v = u+at

So v = 0+1.3×10.769 = 14 m /sec

7 0
3 years ago
Other questions:
  • What is the force exerted by a solid surface that opposes gravity?
    11·2 answers
  • Two identical balls collide one was initially at rest. after the collision one of the balls has a velocity of 3 m/s south. the o
    11·1 answer
  • A 25 kg bear slides, from rest, 12 m down a lodgepole pine tree, moving with a speed of 5.6 m/s just before hitting the ground.
    5·1 answer
  • How are power ratings used to describe machines?
    11·2 answers
  • An experiment that produces waves on a string is analyzed, and the experimental value for the wave speed is found to be 66 m/s.
    16·2 answers
  • We are usually not aware of the electric force acting between two everyday objects because
    13·2 answers
  • identical springs are placed side-by-side (in parallel), and connected to a large massive block. The stiffness of the 43-spring
    7·1 answer
  • A Force has a size and a(n)?
    10·2 answers
  • A car speeds up from 14 meters per second to 21 meters per second in 6 seconds. Whats the acceleration and the distance passed w
    14·1 answer
  • Water falls off a cliff of height 20m at a rate of 50kg per second
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!