The <span>given the piecewise function is :
</span>
![f(x) = \[ \begin{cases} 2x & x \ \textless \ 1 \\ 5 & x=1 \\ x^2 & x\ \textgreater \ 1 \end{cases} \]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5C%5B%20%5Cbegin%7Bcases%7D%20%0A%20%20%20%20%20%202x%20%26%20x%20%5C%20%5Ctextless%20%5C%20%201%20%5C%5C%0A%20%20%20%20%20%205%20%26%20x%3D1%20%5C%5C%0A%20%20%20%20%20%20x%5E2%20%26%20x%5C%20%5Ctextgreater%20%5C%201%20%0A%20%20%20%5Cend%7Bcases%7D%0A%5C%5D)
To find f(5) ⇒ substitute with x = 5 in the function → x²
∴ f(5) = 5² = 25
To find f(2) ⇒ substitute with x = 5 in the function → x²
∴ f(2) = 2² = 4
To find f(-2) ⇒ substitute with x = 5 in the function → 2x
∴ f(-2) = 2 * (-2) = -4
To find f(1) ⇒ substitute with x = 1 in the function → 5
∴ f(1) = 5
================================
So, the statements which are true:<span>

</span><span>
</span>
Answer:
D. 0.34
Step-by-step explanation:
0.24²+0.31²=x² then you find the square root
Easy if you know the formula
all this means is that your x value is a, and when it is, will give you the value 26.
f(a) = 6a - 4 = 26
6a = 30
a = 5
Let
. The gradient of
at the point (1, 0, 0) is the normal vector to the surface, which is also orthogonal to the tangent plane at this point.
So the tangent plane has equation

Compute the gradient:

Evaluate the gradient at the given point:

Then the equation of the tangent plane is

Answer:
The circle's centre is at the position (3, 5), and it has a radius of 2
Step-by-step explanation:
First let's put it in a useful format by completing the squares:
x² + y² - 6x - 10y + 30 = 0
x² - 6x + y² - 10y = -30
x² - 6x + 9 + y² - 10y + 25 = -30 + 9 + 25
(x - 3)² + (y - 5)² = 4
This tells us that the centre position is (3, 5) and the radius is √4, or 2