Answer:
8.829 m/s²
Explanation:
M = Mass of Earth
m = Mass of Exoplanet
= Acceleration due to gravity on Earth = 9.81 m/s²
g = Acceleration due to gravity on Exoplanet



Dividing the equations we get

Acceleration due to gravity on the surface of the Exoplanet is 8.829 m/s²
Answer:
A) B = 5.4 10⁻⁵ T, B) the positive side of the bar is to the West
Explanation:
A) For this exercise we must use the expression of Faraday's law for a moving body
fem = 
fem =
- d (B l y) / dt = - B lv
B = 
we calculate
B = - 7.9 10⁻⁴ /(0.73 20)
B = 5.4 10⁻⁵ T
B) to determine which side of the bar is positive, we must use the right hand rule
the thumb points in the direction of the rod movement to the south, the magnetic field points in the horizontal direction and the rod is in the east-west direction.
Therefore the force points in the direction perpendicular to the velocity and the magnetic field is in the east direction; therefore the positive side of the bar is to the West
Answer:
The minimum inductance needed is 2.78 H
Explanation:
Given;
frequency of the AC, f = 26.5 Hz
the root mean square voltage in the circuit,
= 41.2 V
the maximum current in the circuit, I₀ = 126 mA
The root mean square current is given by;

The inductive reactance is given by;

The minimum inductance needed is given by;

Therefore, the minimum inductance needed is 2.78 H
Answer:
276.5 m/s^2
Explanation:
The initial angular velocity of the turbine is

The length of the blade is
r = 17.9 m
So the centripetal acceleration is given by

At the instant t = 0,

So the centripetal acceleration of the tip of the blades is
