Answer:
I think 1,300ft (400m) not entirely sure.
Assume that an ingot of copper has a mass of 9.1 kg or 9100 g.
The cross-sectional area of the copper wire with diameter of 6.5 mm (or 0.65 cm) is
A = (π/4)*(0.65 cm)² = 0.3318 cm²
The density of copper is given as 8.94 g/cm³.
If the length of copper wire is L cm, then
(0.3318 cm²)*(L cm)*(8.94 g/cm³) = 9100 g
L = 9100/(0.3318*8.94) = 3.0678 x 10³ cm
Note that
1 cm = 1/2.54 in = 1/2.54 in = 0.3937 in
= 0.3937/12 = 0.03281 ft
Therefore
L = (3.0678 x 10³ cm)*(0.03281 ft/cm) = 100.65 ft
Answer: 100.65 ft
Answer:
1/4
Explanation:
Mechanical Advantage = Load/Effort
Given
Effort applied = 24N
Load = 6N
Substitute
MA = 6/24
MA = 1/4
Hence the mechanical advantage is 1/4
Answer:
N = 26.59 N
Explanation:
given,
mass = 0.38 kg
radius of the hoop = 1.10 m
speed = 5.35 m/s
force = ?
now,


we know that,





N = 26.59 N