Answer:
Explanation:
<u>2-D Projectile Motion</u>
In 2-D motion, there are two separate components of the acceleration, velocity and displacement. The horizontal component has zero acceleration, while the acceleration in the vertical direction is always the acceleration due to gravity. The basic formulas for this type of movement are
The projectile is fired in such a way that its horizontal range is equal to three times its maximum height. We need to find the angle \theta at which the object should be launched. The range is the maximum horizontal distance reached by the projectile, so we establish the base condition:
Using the formulas for
Simplifying
Dividing by
Rearranging
Answer:
<em>a. 4.21 moles</em>
<em>b. 478.6 m/s</em>
<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Explanation:
Volume of container = 100.0 L
Temperature = 293 K
pressure = 1 atm = 1.01325 bar
number of moles n = ?
using the gas equation PV = nRT
n = PV/RT
R = 0.08206 L-atm-
Therefore,
n = (1.01325 x 100)/(0.08206 x 293)
n = 101.325/24.04 = <em>4.21 moles</em>
The equation for root mean square velocity is
Vrms =
R = 8.314 J/mol-K
where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol
Vrms = = <em>478.6 m/s</em>
<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>
=
where
Voxy = root mean square velocity of oxygen = 478.6 m/s
Vnit = root mean square velocity of nitrogen = ?
Moxy = Molar mass of oxygen = 31.9 g/mol
Mnit = Molar mass of nitrogen = 14.00 g/mol
=
= 0.66
Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>
<em>the root mean square velocity of the oxygen gas is </em>
<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Answer:
1 second later the vehicle's velocity will be:
5 seconds later the vehicle's velocity will be:
Explanation:
Recall the formula for the velocity of an object under constant accelerated motion (with acceleration ""):
Therefore, in this case and
so we can estimate the velocity of the vehicle at different times just by replacing the requested "t" in the expression: