<span>The formulas are,
v1d1² = v2d2² ........ (1)
h = (v2²-v1²)/2g ...... (2)
Given that,
v1 = 1.71 m/s
we assume that the stream has decreased by a factor
d2 =0.805d1
then,
v1d1² = v2 (0.805d1)²
cancelled both side d1² then we get,
v1 = v2 (0.805)²
v1 = v2 (0.648025)
Sub v1 = 1.71,
1.71 = v2 (0.648025)
v2 = 1.71/0.648025
v2 = 2.638787083831642
v2 = 2.64 m/s
The vertical distance formula,
h = (v2²-v1²)/2g
We know that value of gravity constant is 9.8 m/s²
h = {(2.64)² - (1.71)²)/2(9.8)
h = {(6.9696) - (2.9241)}/19.6
h = (4.0455)/19.6
h = 0.2064030612244898
h = 0.21 cm
Therefore, the vertical distance h = 0.21 cm.</span>
Answer:
24k
Explanation:
We multiply by 200V by 24
That's true.
If the line is perpendicular to the y-axis, then it's horizontal,
and parallel to the x-axis.
Every point on the line has the same y-coordinate. If the point (-5, 1)
is on the line, then all the points (any number, 1) are also on it.
The equation of the line is
[ y = 1 ] .
Answer:
The peak wavelength of the light it irradiates decreases
Explanation:
As the temperature of a blackbody increase, the peak wavelength of the light it radiates decreases, this follows Wien's Law.
A blackbody is an ideal substance that emits all frequencies of light and also has the ability to absorb them as well.
Wiens displacement law, explains that the position of the peak wavelength of the thermal radiation emitted by bodies can change with temperature, and as the temperature increases beyond a certain point, the wavelength begins to reduce. This often changes the colour of the light emitted from heated objects.
Answer:
The frequency of this photon is 
(D) is correct option.
Explanation:
Given that,
Excited states,

We need to calculate the wavelength
Using formula for energy





We need to calculate the frequency
Using formula of frequency


Where, E =energy


Hence, The frequency of this photon is 