Answer:
D. Newton's second law
Explanation:
Newton's second law of motion states that force of an object is a product of its mass and its acceleration.
Mathematically, F= ma where m is mass and a is acceleration
So from the statement above : The acceleration of an object is proportional to the force applied to it and inversely proportional to its mass , it can be seen from the formula variation as;
F= ma -----making a the subject of the formula
a= F/ m
a= 1/m * F --------- a is inversely related to m as you can see from 1/m but directly related to F hence;
Increase in mass with the same force applied causes the body to accelerate slower where as when force increases, the body accelerates faster.
Answer:
I would have to say the answer is D
Explanation:
because the angle is being changed using the ray box.
The attractive force between all matter in the universe is gravity.
Thank you for the message my friend, yoU have a good day as well :)
Answer:
All the given options will result in an induced emf in the loop.
Explanation:
The induced emf in a conductor is directly proportional to the rate of change of flux.

where;
A is the area of the loop
B is the strength of the magnetic field
θ is the angle between the loop and the magnetic field
<em>Considering option </em><em>A</em>, moving the loop outside the magnetic field will change the strength of the magnetic field and consequently result in an induced emf.
<em>Considering option </em><em>B</em>, a change in diameter of the loop, will cause a change in the magnetic flux and in turn result in an induced emf.
Option C has a similar effect with option A, thus both will result in an induced emf.
Finally, <em>considering option</em> D, spinning the loop such that its axis does not consistently line up with the magnetic field direction will<em> </em>change the angle<em> </em>between the loop and the magnetic field. This effect will also result in an induced emf.
Therefore, all the given options will result in an induced emf in the loop.