The final temperature of the tea cup is 100°C.
<h3>What is internal energy?</h3>
The Internal energy is the energy of a substance due to to the constant random motion of its particles.
The symbol for internal energy of a substance is U and it is measured in Joules.
ΔU = q + W
- W is the mechanical work.
In conclusion, the final temperature of the tea cup at room temperature of 24 °C which is heated until it has twice the internal energy is 100°C.
Learn more about internal energy at: brainly.com/question/24028630
#SPJ1
Well I can't see the following physical properties you talked about in the question.
Mass per unit volume ratio is called density.
Answer: Eat only when you're truly hungry instead of when you are tired, anxious, or feeling an emotion besides hunger.
Plan meals ahead of time to ensure that you eat a healthy well-balanced meal.
Keep more fruits, low-fat dairy products (low-fat milk and low-fat yogurt), vegetables, and whole-grain foods at home and at work.
Explanation:
Answer:
The output power is 2 kW
Explanation:
It is given that,
Number of turns in primary coil, 
Number of turns in secondary coil, 
Voltage of primary coil, 
Current drawn from secondary coil, 
We need to find the power output. It is equal to the product of voltage and current. Firstly, we will find the voltage of secondary coil as :



So, the power output is :



or

So, the output power is 2 kW. Hence, this is the required solution.
<span>When looking at nuclear masses we speak of the processes nuclear fision and nuclear fusion. </span>In fission a nucleus breaks up, into two nuclei. In fusion on the other hand two light nuclei combine to form one heavier nucleus. The relation
E=m*c^2. explains the difference in masses. <span>
So, in case of nuclear fusion t</span><span>he mass of the parts is always </span>more than the mass of the whole when looking at nuclear masses. In case of nuclear fusion. And in case of nuclear fision, the mass of the parts is always less<span> than the mass of the whole when looking at nuclear masses. In case of nuclear fusion</span>