Answer:
The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. ... increases, the force of gravity decreases. If the distance is doubled, the force of gravity is one-fourth as strong as before.
Answer:
7.401 * 10^(-15) N
Explanation:
30 electrons will have a charge:
30 * -1.6022 * 10^(-19) C
= - 4.806 * 10^(-18) C
The relationship between electric field and electric force is:
E = F/q
This means that force, F, is
|F| = |E|*|q|
|F| = |1540| * |-4.806 * 10^(-18)|
|F| = |-7401.24 * 10^(-18)|
|F| = 7.401 * 10^(-15) N
Answer:
19 m/s
Explanation:
The complete question requires the final speed to be calculated.
Velocity is the rate and direction at which an object moves. Acceleration is the rate of change of velocity per unit time and can be calculated by the difference in velocity over a given time.
For this question, first the unknown acceleration must be calculated and used to determine the final velocity
Step 1: Calculate the acceleration




Step 2: Calculate the velocity using the acceleration calculated above



Answer: critical angle, sin^-1 (n2/n1)
Explanation: the angle of incidence at which the retracted ray makes an angle of 90° with the normal is known as the critical angle.
Snell's law defined refraction mathematically as shown below
n1 sin θi = n2 sin θr
n1 = refractive index of the first medium
n2 = refractive index of the second medium
θi = angle of incidence
θr = angle of refraction
When the refrafted ray is perpendicular to the normal, the angle of refraction (θr) is 90° hence making the angle of incidence (θi) the critical angle θc
By substituting these conditions into the Snell's law, we have that
n1 sin θc = n2 sin 90
According to trigonometry, the value of sin 90 is 1, hence we have that
n1 sin θc =n2
sin θc = n2/n1
θc = sin^-1 (n2/n1)
A force can be considered a push or pull
hope this helps :)