Answer:
The angle of banked curve that makes the reliance on friction unnecessary is

Explanation:
In order the car to stay on the curve without friction, the net force in the direction of radius should be equal or smaller than the centripetal force. Otherwise the car could slide off the curve.
The only force in the direction of radius is the sine component of the weight of the car

The cosine component is equivalent to the normal force, which we will not be using since friction is unnecessary.
Newton’s Second Law states that

Also, the car is making a circular motion:

Combining the equations:

Finally the angle is

Answer:
The angle it subtend on the retina is
Explanation:
From the question we are told that
The length of the warbler is 
The distance from the binoculars is 
The magnification of the binoculars is 
Without the 8 X binoculars the angle made with the angular size of the object is mathematically represented as



Now magnification can be represented mathematically as

Where
is the angle the image of the warbler subtend on your retina when the binoculars i.e the binoculars zoom.
So

=> 

Generally the conversion to degrees can be mathematically evaluated as

Answer:
2m/s^2
Explanation:
Clculate the acceleration:
V = u +at
20m/s = 0 + a*10s
a = 20m//10s
a = 2m/s²
From the data given , it is not possible to calculate the displacement , because no direction of motion is given
But it is possible to calculate the distance travelled
Distance = ut + ½ *a*t²
distance = 0 + ½ * 2m/s * 10²s
distance = 100m
The answer would be 27,000 Joules because (1/2) m v^2 =30*900 which equals 27,000 J
Explanation:
Given that,
Wavelength = 6.0 nm
de Broglie wavelength = 6.0 nm
(a). We need to calculate the energy of photon
Using formula of energy



(b). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


(c). We need to calculate the energy of photon
Using formula of energy



(d). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


Hence, This is the required solution.