Answer:
A. The particles will begin to move enough
that they slide past each other.
Explanation:
When the plastic cup is heated, the Kinetic energy of its particles starts increasing. As the temperature rises, the kinetic energy keeps increasing. With the increase of K.E, the particles start moving faster and faster. When the temperature finally reaches the melting point, the K.E of the molecules is enough to break the bonds and slide past each other.
Answer:C
Explanation:
When a constant horizontal force is applied to the box, box started moving in the horizontal direction such that it moves with constant velocity 
Constant velocity implies that net force on the box is zero
i.e. there must be an opposing force which is equal to the applied force and friction force can serve that purpose.
So option c is the correct choice.
Well we know the correct answer cannot be "a" bcause velocity is tangent to the circlular path of an object experienting centripical motion. Velocity DOES NOT point inward in centripical motion.
we know the correct answer cannot be "b" because "t" stands for "time" which cannot point in any direction. so, time cannot point toward the center of a circle and therefore this answer must be incorrect.
I would choose answer choice "c" because both force and centripical acceleration point toward the center of the circle.
I do not think answer choice "d" can be correct because the velocity of the mass moves tangent to the circle. velocity = (change in position) / time. Therefore, by definition the mass is moving in the direction of the velocity which does not point to the center of the circle.
does this make sense? any questions?









☯ <u>Using 1st equation of motion </u>











☯ <u>Now, Finding the force exerted </u>







☯ <u>Hence</u>, 
