Answer:
I know one answer is an observer on earth sees a lunar eclipse
Answer:
Correct answer: F₂ = 104.5 N
Explanation:
Given:
m = 57 g = 57 · 10⁻³ kg
Δt = 30 ms = 30 · 10 ⁻³ seconds
V₁ = 73.14 m/s service speed
V₂ = 55 m/s returned speed
M = m · V Momentum or Impulse
You forgot to indicate what time the ball contact when returning.
We will assume that the time is the same Δt = 30 ms = 30 10 ⁻³ seconds.
The formula for calculating force is according to Newton's second law is:
F = ΔM / Δt = m · ΔV / Δt
Force during service is:
F₁ = 57 · 10⁻³ · 73.14 / 30 · 10 ⁻³ = 138.97 N
F₁ = 138.97 N
Returned force:
F₂ = 57 · 10⁻³ · 55 / 30 · 10 ⁻³ = 104.5 N
F₂ = 104.5 N
God is with you!!!
Work = (force) x (distance)
When a force of 150 N pushes through a distance of 13 meters,
it does
Work = (150 N) x (13 m) = 1,950 joules .
I'm not sure what your question is. But, the half life is the amount of time required for half the material to decay. For U238 this is 4.5 billion years, whilst for Fr-223 (Francium) its about 22 minutes. To calculate the time for something to decay you need to use the equation:
Mass (after time t) = Mass (initial) * (0.5)^(time/half life)
Hope this helps
Answer:
ΔL = 0.66 m
Explanation:
The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:
ΔL = αLΔT
where,
ΔL = Change in Length of the bridge = ?
α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹
L = Original Length of the Bridge = 1000 m
ΔT = Change in Temperature = Final Temperature - Initial Temperature
ΔT = 40°C - (-20°C) = 60°C
Therefore,
ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)
<u>ΔL = 0.66 m</u>