Answer:
Check your router connections then restart your router.
Explanation:
Answer:
Because it is open to more wood being burned and it is giving smoke out
Explanation:
All of these things were seen in formal experiments by the 19th century. But some of them are easy to see in your own home. It's obvious that light can reflect - you just have to look in a mirror. Light bounces off the mirror and goes into your eye so you can see yourself. It's also obvious that light can refract: All you have to do is put a spoon in a large glass of water and watch how the spoon appears to bend.
That happens because the light is bending as it moves between air and water. Both of these things can be seen even more clearly in a laboratory using beams of light or lasers.
Answer:
2.72 cycles
Explanation:
First of all, let's find the time that the stone takes to reaches the ground. The stone moves by uniform accelerated motion with constant acceleration g=9.8 m/s^2, and it covers a distance of S=44.1 m, so the time taken is

The period of the pendulum instead is given by:

Therefore, the number of oscillations that the pendulum goes through before the stone hits the ground is given by the time the stone takes to hit the ground divided by the period of the pendulum:
