Answer:
I may be a little late, but it's A i got it right on the exam
Explanation:
Answer:
Explanation:
Given
Mass of object (m)=6 kg
falling height(h)=10 m
mass of water(
)=600 gm
temperature of water =15
specific heat of water 
Let T be the Final Temperature of water
Here Object Potential Energy is converted into Heat energy which will be absorbed by water
Potential Energy(P.E.)
Heat supplied


T-16=0.234

This is not an efficient way of heating water as there is only
increase in temperature.
The kinetic energy in the first case is 4 times more than the second case.
Hence, option D)It is 4 times greater is the correct answer.
<h3>What is Kinetic Energy?</h3>
Kinetic energy is simply a form of energy a particle or object possesses due to its motion.
It is expressed as;
K = (1/2)mv²
Where m is mass of the object and v is its velocity.
Given that;
- For the first case, velocity v = 16m/s
- For the second case, velocity = 8m/s
- Let the mass of the car be m
For the first case, kinetic energy of the car will be;
K = (1/2)mv²
K = (1/2) × m × (16m/s)²
K = (1/2) × m × 256m²/s²
K = mass × 128m²/s²
For the second case, kinetic energy of the car will be;
K = (1/2)mv²
K = (1/2) × m × (8m/s)²
K = (1/2) × m × 64m²/s²
K = mass × 32m²/s²
Comparing the kinetic energy of the car with the same mass but different velocity, we can see that the kinetic energy in the first case is 4 times more than the second case.
Hence, option D)It is 4 times greater is the correct answer.
Learn more about kinetic energy here: brainly.com/question/12669551
#SPJ1
Answer:
86 turns
Explanation:
Parameters given:
Magnetic torque, τ = 1.7 * 10^(-2) Nm
Area of coil, A = 9 * 10^(-4) m²
Current in coil, I = 1.1 A
Magnetic field, B = 0.2 T
The magnetic toque is given mathematically as:
τ = N * I * A * B
Where N = number of turns
To find the number of turns, we make N subject of formula:
N = τ/(I * A * B)
Therefore:
N = (1.7 * 10^(-2)) / (1.1 * 9 * 10^(-4) * 0.2)
N = 85.85 = 86 turns (whole number)
The number of turns must be 86.
The short answer to how the aurora happens is that energetic electrically charged particles (mostly electrons) accelerate along the magnetic field lines into the upper atmosphere, where they collide with gas atoms, causing the atoms to give off light.