Answer:
The answer is in 3 point
Choose which point you like
Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.
Answer:
a North and South Pole :)
Explanation:
Answer:
<em>Hewo Otaku Kun Here! (UwU)</em>
Explanation:
1. A rock sitting at the edge of a cliff has potential energy. If the rock falls, the potential energy will be converted to kinetic energy.
2. Tree branches high up in a tree have potential energy because they can fall to the ground.
3. A stick of dynamite has chemical potential energy that would be released when the activation energy from the fuse comes into contact with the chemicals.
4. The food we eat has chemical potential energy because as our body digests it, it provides us with energy for basic metabolism.
5. A stretched spring in a pinball machine has elastic potential energy and can move the steel ball when released.
6. When a crane swings a wrecking ball up to a certain height, it gains more potential energy and has the ability to crash through buildings.
7. A set of double "A" batteries in a remote control car possess chemical potential energy which can supply electricity to run the car.
<em>happy to help!</em>
<em>from: Otaku Kun ^^</em>
Answer:
Electric field by charged disk is given as
E = (Charge Density/2u0)*[1 - (z/sqrt(z^2 - R^2))]
R = 9.54cm = 0.0954m, z = 1.01m, Charge density = 4.07 x 10^-6C/m2, e0 = 8.85 x 10^-12F/m.
Substituting all the values in to equation,
E = (2.299 x 10^5) x (8.931 x 10^-3)
E = 2.053 x 10^3N/C
Explanation: