The puddle would warm up then begin to evaporate and then the gas could create a cloud the condensate and then make rain again to create another puddle then it happens all over again
Answer:
a) 39.6 m/s b) 4123 N
Explanation:
a) At the top of the loop, all of the forces point downwards (force of gravity and normal force).
Fnet=ma
ma=m(v^2/R) (centripetal acceleration)
mg=m(v^2/R)
m cancels out (this is why pilot feels weightless) so,
g=(v^2/R)
9.8 m/s^2 = v^2/160 m
v^2=1568 m^2/s^2
v=39.6 m/s
b) At the bottom of the loop, the normal force and the force of gravity point in opposite directions. The normal force is the weight felt.
Convert 300 km/hr to m/s
300 km/hr=83.3 m/s
Convert pilot's weight into mass:
760 N = 77.55 kg
Fnet=ma
n-mg=m(v^2/R)
n=(77.55 kg)(((83.3 m/s)^2)/160 m)+(77.55 kg)(9.8 m/s^2)
n=3363.2 N+760 N=4123 N
Pushing a broke down car, even done by more than one person, is difficult especially if the distance to be covered is quite far. A car is heavy and it requires a lot of force to start the car moving. This is because the inertia of the car to remain at rest is great. Additionally, the force applied in pushing the car must be greater than the frictional force to cause it to accelerate. The frictional force is dependent on the mass of the object which means that the frictional force acting on the car is also great. Finally, with every push of the car, the frictional force will always be present and acting on the opposite direction. The push that will be supplied must be sustained all throughout.