Answer:
a) 4.49Hz
b) 0.536kg
c) 2.57s
Explanation:
This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:

for some time t you have:
x=0.134m
v=-12.1m/s
a=-107m/s^2
If you divide the first equation and the third equation, you can calculate w:

with this value you can compute the frequency:
a)

b)
the mass of the block is given by the formula:

c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:

Finally, the amplitude is:

Answer:
PE = (|accepted value – experimental value| \ accepted value) x 100%
Explanation:
Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.