Answer:
1.5 A
Explanation:
Applying
V = IR'....................... Equation 1
make I the subject of the equation
I = V/R'.................. Equation 2
Where V = Voltage, I = current, R' = Total resistance.
From the question,
In a series connection,
R' = 0.2+0.3+0.5+5 = 6 ohm.
Given: V = 9V
Substitute into equation 2
I = 9/6
I = 1.5 A.
Note: Since all the resistors are connected in series, thesame current flows through them
Therefore the current flowing through the 5 ohm resistor = 1.5 A
Answers:
a) 154.08 m/s=554.68 km/h
b) 108 m/s=388.8 km/h
Explanation:
<u>The complete question is written below:
</u>
<u></u>
<em>In 1977 off the coast of Australia, the fastest speed by a vessel on the water was achieved. If this vessel were to undergo an average acceleration of
, it would go from rest to its top speed in 85.6 s. </em>
<em>a) What was the speed of the vessel?
</em>
<em>
</em>
<em>b) If the vessel in the sample problem accelerates for 1.00 min, what will its speed be after that minute? </em>
<em></em>
<em>Calculate the answers in both meters per second and kilometers per hour</em>
<em></em>
a) The average acceleration
is expressed as:
(1)
Where:
is the variation of velocity in a given time
, which is the difference between the final velocity
and the initial velocity
(because it starts from rest).

Isolating
from (1):
(2)
(3)
(4)
If
and
then:
(4)
b) Now we need to find the final velocity when
:
<em></em>
(5)
(6)
The force of the throw is an applied force
moving through the air is drag
and the downward pull would be due to gravity
Yes, this is because particles in a solid there are more particles which are touching. They can only vibrate. But particles in a gas are far apart. This is the same for liquids to.
Answer:
Wind deposits sand into a small mound. So the answer is Deposition