Do you remember this formula for the distance traveled while accelerated ?
<u>Distance = (initial speed) x (t) plus (1/2) x (acceleration) x (t²)</u>
I think this is exactly what we need for this problem.
initial speed = 20 m/s down
acceleration = 9.81 m/s² down
t = 3.0 seconds
Distance down = (20) x (3) plus (1/2) x (9.81) x (3)²
Distance = (60) plus (4.905) x (9)
Distance = (60) plus (44.145) = 104.145 meters
Choice <em>D)</em> is the closest one.
Answer:
A.B = -38
Explanation:
A = 2i + 9j and B = -i - 4j.
So, A.B = (2i + 9j).(-i - 4j)
= 2i.(-i) + 2i.(-4j) + 9j.(-i) + 9j.(-4j)
= -2i.i - 8i.j - 9j.i - 36j.j
since i.i = 1, j.j = 1, i.j = 0 and j.i = 0, we have
A.B = -2(1) - 8(0) - 9(0) - 36(1)
A.B = -2 - 0 - 0 - 36
A.B = -38
Answer:
gravity
Explanation:
That would make the most sense from what I know