Answer:
Ionization and dissociation
Explanation:
The given data is as follows.
, 
Work produced per kJ of heat extracted from hot reservoir = 0.45 kJ = Efficiency
If the device is Carnot cycle then its efficiency will be maximum and its value will be equal to ![[1 - (\frac{T_{c}}{T_{h}} )]](https://tex.z-dn.net/?f=%5B1%20-%20%28%5Cfrac%7BT_%7Bc%7D%7D%7BT_%7Bh%7D%7D%20%29%5D)
Using this relation we will calculate the efficiency as follows.
Efficiency = ![[1 - (\frac{T_{c}}{T_{h}} )]](https://tex.z-dn.net/?f=%5B1%20-%20%28%5Cfrac%7BT_%7Bc%7D%7D%7BT_%7Bh%7D%7D%20%29%5D)
=
= 0.928
Hence, it means that this type of device is possible and the claim is also believable.
Answer:
A) Ca(s) + C(s) + 3/2 O₂(g) → CaCO₃(s)
Explanation:
Standard enthalpy of formation of a chemical is defined as the change in enthalpy durin the formation of 1 mole of the substance from its constituent elements in their standard states.
The consituent elements of calcium carbonate, CaCO₃, in their standard states (States you will find this pure elements in nature), are:
Ca(s), C(s) and O₂(g)
That means, the equation that represents standard enthalpy of CaCO₃ is:
<h3>A) Ca(s) + C(s) + 3/2 O₂(g) → CaCO₃(s)</h3><h3 />
<em>Is the equation that has ΔH° = -1207kJ/mol</em>
Answer:
14.7 lbs
Explanation:
Air pressure is the weight of the air above us. It is approximately 14.7 pounds or lbs per square inch at sea level. It means that an air column weights 14.7 lbs, 1 square inch in diameter, reaching all the way up to the top of the atmosphere.