Answer:
<em>a) below the observed position</em>
<em>b) directly at the observed position</em>
<em></em>
Explanation:
If I'm standing on the bank of a stream, and I wish to spear a fish swimming in the water out in front of me, I would aim below the observed fish to make a direct hit. This is because the phenomenon of refraction of light in water causes the light coming from the fish is refract away from the normal as it passes into the air and into my eyes.
If I'm to zap the fish with a taser, I would aim directly at the observed fish because the laser (a form of concentrated light waves) will refract into the water, taking the same path the light from the fish took to get to my eyes.
Answer:
R = m⁴/kg . s
Explanation:
In this case, the best way to solve this is working with the units in the expression.
The units of velocity (V) are m/s
The units of density (d) are kg/m³
And R is a constant
If the expression is:
V = R * d
Replacing the units and solving for R we have
m/s = kg/m³ * R
m * m³ / s = kg * R
R = m * m³ / kg . s
<h2>
R = m⁴ / kg . s</h2>
This should be the units of R
Hope this helps
Answer:
5.096*10^-8
Explanation:
Given that
The average value of the electromagnetic wave is 310 mW/m²
To find the maximum value of the magnetic field the wave is closest to, we say
Emax = √Erms
Emax = √[(2 * 0.310 * 3*10^8 * 4π*10^-7)]
Emax = √233.7648
Emax = 15.289
Now, with our value of maximum electromagnetic wave gotten, we divide it by speed of light to get our final answer
15.289 / (3*10^8) = 5.096*10^-8 T
Suffice to say, The maximum value of the magnetic field in the wave is closest to 5.096*10^-8
Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.
Write me here and I will give you my phone number - *pofsex.com*
My nickname - Lovely